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ABSTRACT 
 

The global fruit production industry has been suffering from numerous problems in the yield, 
quality, and food safety context. The use of drone-based sensing and imaging technologies has 
emerged as a promising approach for monitoring fruit crops, enabling real-time assessment of crop 
health, growth, and development. Monitoring fruit crops helps identify areas of improvement and 
makes decisions based on data.  This review focuses on the various sensor technologies utilized in 
drone-based fruit crop monitoring, including RGB, multispectral, hyperspectral, thermal, and LiDAR 
sensors. The applications of these sensors are discussed, including yield estimation and prediction, 
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crop growth monitoring, disease detection and diagnosis, pest detection and management, nutrient 
deficiency detection, and water stress monitoring. The review highlights the advantages and 
limitations of each sensor technology, as well as the challenges associated with data processing 
and analysis. Case studies demonstrate the effectiveness of drone-based sensing and imaging in 
fruit crop monitoring, and future directions are discussed, including the integration of sensor 
technologies with other precision agriculture tools and the development of specialized sensors and 
cameras. Standardization and best practices are emphasized as crucial for the widespread 
adoption of drone-based sensing and imaging in fruit crop monitoring. 
 

 
Keywords: Precision agriculture; fruit production; crop monitoring; agriculture practices. 
 

1. INTRODUCTION 
  
The global fruit production industry has faced 
various challenges in terms of optimum yield, 
quality, and food safety. Fruit crop monitoring is 
an important task for identifying possible issues, 
making data-driven decisions, and implementing 
precision agriculture practices (Zhang et al., 
2020). Precise monitoring will allow farmers to 
detect the early signs of stress, disease, and 
pests and reduce yield losses and environmental 
impact (Gomez et al., 2020). Timely monitoring 
allows farmers to detect potential problems, 
make data-driven decisions, and apply precision 
agriculture practices. Fruit production around the 
world faces several challenges in ensuring 
optimum yield, quality, and food safety. 
 
Fruit crop monitoring plays an essential role in 
pointing out possible issues, data-based 
decisions, and precision agriculture practice 
implementation by Zhang et al. (2020). Correct 
monitoring gives a farmer a chance to discover 
the earliest signs of stress, diseases, or pests 
that eventually cause lesser losses and also 
lesser impact on the environment, as identified 
by Gomez et al. 2020). Timely monitoring 
enables farmers to pinpoint potential problems, 
make data-driven decisions, and employ 
precision agriculture. 
 
Traditional methods of fruit crop monitoring rely 
highly on manual inspection, ground-based 
sensors, and satellite images. Manual 
observation is the mainstay of traditional 
agricultural monitoring techniques, which have 
drawbacks including being costly, labor-intensive, 
and they are very prone to errors (Karmakar et 
al., 2023). This is because it limits the inspector's 
ability to examine a smaller sample of crops from 
a smaller region of fields in a given amount of 
time. The inspectors are also specialists in a 
particular agricultural procedure. To examine 
various processes or to cover a larger area, more 
inspectors have to be hired. Nevertheless, it 

raises costs (Dorj et al., 2017). It will then be a 
result of the quality of knowledge and expertise 
of the inspector. Therefore, it might come up with 
less successful outcomes containing critical 
mistakes (Bargoti and Underwood, 2017). 
 
Remote sensing technology is currently 
considered a tool with great potential to improve 
intelligent and precise agricultural processes with 
the introduction of Unmanned Aerial Vehicles 
(UAVs) (Rejeb et al., 2022). According to 
Eskandari et al. (2020), UAVs are drones or 
remotely piloted aerial systems equipped with 
advanced equipment, such as multispectral 
cameras, sensors, and communication devices 
with decision-making intelligence, for data 
collection and perception, decision-making, and 
action performance. Overcoming the drawbacks 
of conventional monitoring, drone-based sensing 
and imaging have become useful instruments for 
precision agriculture (Sankaran et al., 2015). 
Precision agriculture, in combination with drone 
technology, offers monitoring of extensive areas, 
reduction in labor costs, and enhanced decision-
making (Rejeb et al., 2022). Drones equipped 
with different sensors and cameras provide 
critical data about crop health, growth, and 
development. This is a comprehensive review of 
drone-based sensing and imaging for the 
monitoring of fruit crops based on principles, 
technologies, applications, advantages, 
challenges, and future direction. This review 
aims to synthesize the existing research on the 
effectiveness of drone-based sensing and 
imaging in fruit crop monitoring. 
 

2. DRONE PLATFORMS AND SENSORS 
 
Drone platforms are very significant for fruit crop 
monitoring, as they offer numerous types 
according to specific applications (Zhang et al., 
2020). Fixed-wing drones have airplane like 
designs, thus they are used in large agricultural 
areas. Equipped with long-range capability and a 
stable flight pattern, such drones are ideal for 
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mapping expansive fields, monitoring crop 
health, and assessing general farm conditions 
(Vinodhini, 2024)). Rotary-wing drones, like 
quadcopters, are more agile and can hover, 
making them ideal for smaller, complex orchard 
environments (Sankaran et al., 2015). Hybrid 
drones have a fixed-wing and rotary-wing 
combination, providing versatility. Sensor 
selection is vital for successful fruit crop 
monitoring. 
 
Drones offer an exciting opportunity to track crop 
fields with high spatial and temporal resolution 
remote sensing to enhance water stress 
management in irrigation. Farmers have 
historically depended on soil moisture 
measurements and weather conditions to detect 
crop water status for irrigation scheduling (Awais 
et. al, 2022). RGB cameras are utilized for high-
resolution photography (Candiago et al., 2015), 
whereas multispectral cameras capture 
reflectance data over specific wavelengths 
(Matese et al., 2015). Hyperspectral cameras 
offer detailed spectral information, and this can 
be used for the detection of minor changes in 
crop health (Gomez et al., 2020). Thermal 
cameras are used to detect temperature 
variations that can indicate the presence of water 
stress or illness (Lottes et al., 2017). LiDAR 
sensors offer high-resolution 3D models of 
orchards, enabling crop height and density 
analysis (Rasmussen et al., 2016). 
 
The quality of data, in great measure, is affected 
by camera systems and configurations. The use 
of single-camera setups is appropriate for simple 
monitoring tasks, while multi-camera 
configurations allow for the simultaneous capture 
of data from multiple angles (Toth et al., 2019). 
Stereo camera systems offer 3D imaging 
capabilities, improving spatial awareness (Zhang 
et al., 2020); some drones integrate multiple 
sensor types, allowing for comprehensive data 
collection; efficient sensor-drone integration 
ensures smooth data collection and processing; 
this integration includes sensor calibration, 
synchronization, and data fusion techniques 
(Sankaran et al., 2015); advanced drone 
platforms frequently have modular designs that 
make it simple to swap out or upgrade sensors; 
integration also takes communication protocols, 
power management, and data storage into 
consideration.  
 

The choice of drone platform and the sensor 
suite mainly depends on monitoring objectives, 
orchard features, and environmental conditions 

(Gomez et al., 2020). For example, to detect fruit 
and count the number, RGB imaging at a high 
resolution might be acceptable, while for disease 
diagnosis or analysis of nutrient deficiency, one 
may need multispectral or hyperspectral imaging. 
 

3. APPLICATIONS IN FRUIT CROP 
MONITORING 

 
Drone-based sensing and imaging have 
numerous applications in fruit crop monitoring, 
enhancing the efficiency and accuracy of 
agricultural practices. 
 

3.1 Yield Estimation and Prediction, 
Crop Growth Monitoring 

 
Drones mounted with RGB, multispectral, and 
hyperspectral cameras provide accurate yield 
estimation and forecast (Gomez et al., 2020). 
Crop growth, height, density, and vigor can be 
monitored by assessing vegetation indicators 
such as NDVI and EVI (Matese et al., 2015). This 
information allows for more informed judgments 
on pruning, thinning, and harvesting. Additionally, 
drone-based 3D model using LiDAR and 
photogrammetry permits the accurate 
assessment of crop height and density 
(Rasmussen et al., 2016).  
 

3.2 Disease Detection and Diagnosis, 
Pest Detection and Management 

 
Drones are useful in detecting fungal, bacterial, 
and viral diseases such as powdery mildew and 
citrus canker (Candiago et al., 2015). 
Hyperspectral imaging identifies subtle changes 
in spectral reflectance, indicating disease 
presence (Gomez et al., 2020). In the same way, 
thermal cameras installed in drones detect 
temperature variations, which helps in pest 
management (Lottes et al., 2017). For example, 
thermal imaging detects areas with increased 
insect activity, allowing for targeted pesticide 
application. 
 
Drones detect fungal, bacterial, and viral 
diseases like powdery mildew and citrus canker 
(Candiago et al. 2015). Hyperspectral imaging 
detects even slight variations in spectral 
reflection, indicating the presence of illness 
(Gomez et al., 2020). Conversely, a drone with a 
thermal camera will detect temperature 
differentials and aid in the management of pests 
(Lottes et al., 2017). For instance, thermal 
imaging shows areas of high activity of insects so 
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that targeted pesticide application can be 
provided.  
 

3.3 Nutrient Deficiency Detection and 
Water Stress Monitoring 

 
Over the past decade, vegetation 
characterization has been identified as an 
important indicator for understanding ecosystem 
adaptation to environmental change 
(Lioubimtseva and Henebry, 2009). Precise 
estimation of plant nutrient needs based on leaf 
optical properties such as fluorescence, 
reflectance, and transmittance is also gaining 
wide attention in agriculture (Mee et. al., 2016). 
This has been facilitated by development of 
various sensing techniques. Among all nutrients, 
nitrogen appears most frequently as a 
comparative element in most research-based 
studies on nutrient uptake dynamics and patterns 
due to its high relative content in the form of 
proteins in chlorophyll and enzymes. 
Multispectral and hyperspectral imaging have 
emerged as the most reliable 
and important quantification techniques of bioche
mistry of vegetation (Asner et al., 2015; Singh et 
al., 2015; Wang et al., 2020) and have, therefore, 
the great potential to monitor nutrient status of 
crops (He et al., 2016; Mahajan et al., 2017). 
 
Drone-based thermal imaging measures water 
stress and identifies regions that require irrigation 
changes (Zhang et al., 2020). This enables more 
efficient irrigation scheduling, avoiding water 
waste and maintaining maximum crop growth. 
Growers can embrace precision agriculture 
practices by combining these applications, which 
increase crop output, reduce pesticide use, and 
promote sustainable agriculture. 
 

4. IMAGE PROCESSING AND ANALYSIS 
TECHNIQUES 

 
Effective image processing and analysis are 
important to extract valuable information 
essential for useful information derivation from 
drone-acquired images in fruit crop monitoring. 
This section discusses various techniques 
employed in image examines the many 
approaches used in picture processing and 
analysis. 
 
Image preprocessing is an important pre-
processing step for preparing images ready for 
analysis. Registration is an essential step in 
getting images in a position to be analysed. 

Registration is the process of aligning multiple 
images taken several pictures collected at 
different times or angles to form a single, holistic 
image (Gonzalez and woods, 2017). Filtering 
methods like Gaussian or median filtering reduce 
noise and enhance image quality while 
enhancing image quality (Jensen et al., 2000). 
Normalization helps maintain consistency in 
intensity and contrast of images so that one can 
compare across images (Liu et al., 2018).       
Fruit crop monitoring employs OBIA very 
extensively. 

 
OBIA involves segmenting images into 
meaningful objects, such as individual trees or 
fruit, and extracting relevant features (Blaschke 
et al., 2014). This approach enables precise 
analysis of crop health, growth, and 
development. OBIA can easily identify the 
alterations in the size, shape, and color of tree 
canopies, thereby indicating stress or presence 
of disease (Hossain et al., 2019). The 
implementation of machine learning-based 
methods for image analysis to monitor fruit crops 
is now progressively increasing every day. For 
instance, some of the classifying algorithms that 
can ensure precise recognition of crop type, 
growth phases, as well as the existence of 
diseases include Models such as SVM, Random 
Forest Classifier, Naive Bayes, ANN, CNN, and 
their variants (Bhargava and Bansal, 2021).  

 
Continuous factors like fruit quality and yield are 
predicted by regression methods (Gomez et al., 
2020). Large datasets are necessary for the 
training and validation of these algorithms. In fruit 
crop monitoring, image analysis has been 
transformed by deep learning approaches. 
According to Kamilaris et al. (2018), CNN shows 
great effectiveness in picture categorization as 
well as object recognition tasks. LSTM networks 
and RNN check spatial and temporal patterns in 
image sequences (Xu et al., 2020). 

 
These methods enable one to automatically 
detect minute changes in crop development as 
well as health. Data integration and fusion 
combine information from sources like drone-
acquired images, weather data, and soil sensors. 
This integrated approach allows one to have a 
comprehensive insight into crop growth, 
development, and response to environmental 
factors (Zhang et al., 2020). Techniques in data 
fusion, such as PCA and ICA, reduce the 
dimensionality of data and enhance efficiency in 
analysis (Liu et al., 2018).  
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5. CASE STUDIES AND EXAMPLES 
 

5.1 Apple Yield Estimation using Drone-
Based RGB Imaging 

 

A study conducted in Washington State, USA, 
drone-based RGB imaging was utilized to 
estimate apple yield (Gomez et al., 2020). The 
researchers employed object-based image 
analysis (OBIA) to segment images into 
individual trees and extract features related to 
yield. Results showed a strong correlation 
between drone-estimated yield and actual yield 
(R2 = 0.85). This study demonstrated the 
potential of drone-based RGB imaging for 
accurate yield estimation in apple orchards.  
 

5.2 Citrus Disease Detection Using 
Multispectral Imaging 

 

Candiago et al. (2015) employed multispectral 
imaging to identify Huanglongbing or citrus 
greening disease caused by a bacteria 
Candidatus liberibacter. Images were captured 
by using a camera mounted on the drone and 
machine learning classification was performed 
for distinguishing healthy from diseased trees. 
With 92% accuracy of detection, the results have 
been demonstrated for the efficacy of early 
detection of diseases using multispectral imaging 
in citrus orchards. 
 

5.3 Grapevine Water Stress Monitoring 
Using Thermal Imaging 

 

A study in Italy used thermal imaging to track 
water stress in grapevines (Matese et al., 2015). 
Thermal images taken by drones were analyzed 
to detect temperature changes that could be 
indicative of water stress. The results indicated a 
high correlation between the thermal indices and 
the levels of water stress (R2 = 0.90). This study 
proved the potential of thermal imaging in 
precision irrigation management in grapevine 
cultivation. 
 

5.4 Mango Fruit Detection and Counting 
with LIDAR 

 

Scientists in Australia used LIDAR (Light 
Detection and Ranging) to detect and count 
mango fruit (Turner et al., 2015). LIDAR point 
clouds were analysed to identify fruit and 
estimate yield. The results indicated an accuracy 
of 95% in fruit detection and counting. The study 
proved the efficiency of LIDAR for yield 
estimation in mango orchards. 

6. CHALLENGES AND LIMITATIONS 
 
Although drone-based sensing and imaging of 
fruit crops hold much promises, there are still 
various challenges and limitations. 
 

6.1 Weather Conditions 
 
Weather conditions are significantly found to 
have impacts on drone operations and data 
quality. Wind, rain, and extreme temperatures 
can compromise drone stability, sensor accuracy, 
and image quality (Toth et al., 2019). Sunlight 
variability also affects image quality, with harsh 
sunlight causing saturation and shadows (Gomez 
et al., 2020). Researchers have proposed 
strategies to mitigate weather-related issues, 
such as using weather-resistant drones and 
adjusting flight schedules (Zhang et al., 2020). 
 

6.2 Sensor Calibration and Validation 
 
Sensor calibration and validation are important to 
ensure proper data collection. However, sensor 
drift, noise, and variability can degrade the 
quality of data collected (Matese et al., 2015). 
Calibration processes are tedious and need 
specialized equipment (Candiago et al., 2015). 
Validation methods such as ground-truthing are 
very important to validate the accuracy of 
sensors (Turner et al., 2015). 
 

6.3 Data Processing and Analysis 
Complexity 

 
Data processing and analysis are an essential 
part of drone-based sensing and imaging. 
However, there exist challenges in processing 
vast data sets, noise handling and errors, and 
extracting meaningful information from this data 
(Liu et al., 2018). Advanced algorithms and 
machine learning techniques can help with 
overcoming these challenges but necessitate 
heavy computational resources and skillset 
knowledge (Kamilaris et al., 2018). 

 
6.4 Regulatory Frameworks and Privacy 

Concerns 
 
Regulatory frameworks that govern the use of 
drones vary globally, thus causing uncertainty 
and liabilities for users (European Union Aviation 
Safety Agency, 2020). Data collection and 
storage, therefore, pose privacy issues that need 
to be taken into consideration (NOAA, 2017). 
The researcher must adhere to the regulation 
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and privacy concerns by having transparent data 
handling practices. 
 

6.5 Cost-Effectiveness and Scalability 
 
Cost-effectiveness and scalability are essential 
for large-scale adoption. Drone-based sensing 
and imaging can be costly, especially when high-
resolution sensors and complex analytics are 
used (Lottes et al., 2017). Scalability becomes a 
problem when drone-based solutions are applied 
to large agricultural operations (Gomez et al., 
2020). Some researchers are working on finding 
cost-effective alternatives, such as using low-
cost sensors and exploiting existing 
infrastructure. 
 

7. CONCLUSION AND FUTURE 
DIRECTIONS 

 
The development of drone-based sensing and 
imaging has many future directions that have the 
potential to enhance fruit crop monitoring. 
 

7.1 Integration with Other Technologies 
 
Integration with emerging technologies such as 
Internet of Things (IoT), robotics, and Artificial 
Intelligence (AI) will transform fruit crop 
monitoring (Kamilaris et al., 2018). IoT sensors 
can provide real-time soil moisture and 
temperature data, while robotics can automate 
pruning and harvesting tasks (Liu et al., 2019). 
AI-powered analytics can optimize data analysis, 
predictive modeling, and decision-making 
(Gomez et al., 2020). 
 

7.2 Development of Specialized Sensors 
and Cameras 

 
Sensor and camera technology have the 
potential and can offer improved data quality and 
resolution. Specific sensors for targeted stresses, 
diseases, or nutrient deficiencies will enhance 
monitoring accuracies (Matese et al., 2015). 
High-resolution cameras with new spectral 
ranges (hyperspectral, multispectral) provide 
insights into crop health and growth (Candiago et 
al., 2015). 
 

7.3 Better Data Analysis and Decision 
Support Systems 

 
Next-generation data analysis and decision 
support systems will be able to make more 
informed decisions. Advanced machine learning 

algorithms will improve predictive modeling, 
anomaly detection, and recommendation 
systems (Kamilaris et al., 2018). Cloud-based 
platforms will allow for data sharing, 
collaboration, and integration with other 
agricultural systems (Liu et al., 2019). 
 

7.4 Expanded Applications 
 
Drone-based sensing and imaging will extend 
beyond crop monitoring to precision irrigation, 
fertilization, and pest management. Precision 
irrigation systems will apply water according to 
soil moisture and crop water stress (Zhang et al., 
2020). Drone-based fertilization will allow 
targeted nutrient application, minimizing waste 
and environmental impact (Gomez et al., 2019). 
 

7.5 Standardization and Best Practices 
 
Standardization and best practices can only be 
achieved through this wide-scale adoption. 
Standardization of protocols in drone operation, 
data collection, and analysis will ensure 
consistency and allow comparability among 
studies (Toth et al., 2019). Best practices 
development for data management, storage, and 
sharing will boost collaboration and innovation 
(Federal Aviation Administration, 2020). 
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