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ABSTRACT

The Cauchy-Bunyakovsky-Schwarz inequality and its various refinements are very important in mathematical
analysis. In this work, we first introduce an inequality of the form

FO@E < k@) S a7 (2o +4q) Z by fOH) ((% _ g) . q)

k=0
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and by using a functional type generalization of the Cauchy-Bunyakovsky-Schwarz inequality we get some
inequalities for derivatives of a one-parameter deformation of the Gamma function to satisfy the introduced
inequality. Also, we show that the established results are generalizations of some previous results.
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1 INTRODUCTION

The functional type Cauchy-Bunyakovsky-Schwarz inequality is given in (Mitrinovic et al., 1993) as

(/abf(t)g(t)dt)2 < /ab FA(t)at /ab g>(t)dt (1.1)

on the space of continious real valued functions C/[a, b].It is one of the fundamental mathematical inequalities used
in different branches of mathematics, as well as in physics, engineering, and statistics. In recent years, many
generalizations of the inequality (1.1) have been given, for example, see (Alzer, 1992, 1999; Dragomir, 20083;
Steiger, 1969; Zheng, 1998). One of the generalization of the equation (1.1) is given in (Masjed-Jamei, 2009) as

b
/ Fm(fl;fQ;v--ufm)Gk(glngV"7gk)dm

b 3 b 3
< (/ F’V%L(f17f277fm)da:> (/ Gi(g1,9277gk)d1’> (12)

for {fi}it1,{g;}=1 € C[a,b]. Let a1, a2, ..., am € R. Then a subclass of the inequality (1.2) is

1tay  1tag 1tam l-ay l-ag 1-am
Fon(fi,fosc s fm)=f 2 fo? o fm?® 5 Gm(91,92,-,9m) =01 > G ° - gm > (1.3)
for m = k. In particular, when m = 2 and m = 3 it gives the following inequalities respectively
b 2 b b
([ rwarar) < [ r+wa0a [ 105w (1.4
b 2 b b
([ soanra) < [ reowg ™ o @a [ wr om0 (1.5)

fora, 8,7 € Rand f, g, h are real integrable functions such that the integrals in the inequalities (1.4) and (1.5) exist.

In (Masjed-Jamei, 2010), the author gives the inequalities for some well-known special functions in order to get
new inequalities of the form

Fx) < k(z) fpz +q) f(2—p)z —q) (p,g €R, k(z) > 0). (1.6)

Perhaps, the most used of the special functions is the Gamma function. One can come across wildly different
usage of it. For example, it is used to define Hadamard fractional integral, Riemann-Lioville fractional integral,
and nonlinear fractional implicit integro-differential equations of Hadamard-Caputo type with fractional boundary
conditions or abr-fractional Volterra-Fredholm system; see for example (Atshan and Hamoud, 2024; Hamoud et al.,
2026; Jameel and Hamoud, 2025; Sharif et al., 2025).

Numerous extensions and deformations of Euler’s classical Gamma function are discussed in the literature; see for
example, (Diaz and Teruel, 2005; Kokologiannaki and Krasniqi, 2013; Nantomah and Ege, 2022). A one-parameter
deformation of the classical Gamma function, namely v-Gamma function, is defined in (Djabang et al., 2020) as

Ty (z) = /Ooo (t)ﬁ_le_tdt (2,0 > 0). (1.7)

v
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Some results and inequalities associated with the v-Gamma function are presented in (Ege, 2022, 2023).
Differentiating the equation (1.7) with respect to « we have

T _ 1 <[t vt nft —t
{ (x)_’UT ; - In 5 )¢ dt (z,v>0). (1.8)

Note that when v = 1, we have I'\"”)(z) = '™ (z) for n € N = {0,1,2,...}.

In this presented paper we introduce a generalization form of the inequality (1.6) as

m

1
F @) < k()Y an f 7 (pr+q) Y bk fF (2 - p)z—0) (1.9)

k=0 k=0
forl,m,n € N, p, q,ax, br € Rand k(z) > 0, and show that the inequalities we obtained are satisfied the inequality
(1.9).

2 MAIN RESULTS

In this section, we prove some inequalities which involve the derivatives of the v-Gamma function by using the
inequalities (1.4) and (1.5).

Theorem 2.1. Letx,v > 0. Then the inequality

T (2))? < T (2 + ax — o)L (2 — ax + aw) (2.1)
is valid forx + ax — av > 0,z — ax + av > 0, n € 2N,
and the inequality
n(1+p)
F’EJ ) ? < x| ax T x _1 k k 1 1 +
COET S g TV e 0

n(1-p) n(l _ ﬁ)
x TR (3 4 ax — av) Z (=1)Fo* ( ) " (1 - B)

k
k=0
x TMA=A=5) (4 — oz + aw) (2.2)
is valid forx + ax — av > 0, z — ax + av > 0 and some 8 € (—1,1)/{0} such thatn(1 + 8), n(1 — ) € 2N.
z_q

Proof. By substituting [a, b] = [0,00), f(t) = (£)* ", g(t) =In" (£) e~ in the inequality (1.4) we have

=V T () ) < [T (£ G0 (i (£) o)
([ () w () era) < (1) (4)+)

For simplicity let

oo P
I :/ (E) In" (E
0 v v
s £_1)(1+0)
Iz Z/ - e In" (A
o v
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and

oo L-1)(1-a)
I3 = / AR =2 (L) emt=m) gy
o \v v
If 8 =0 we have
L =v"T(z), L =v"T"(z+ az —av), Is=v"T{(z— az + o), (2.4)

for x + ax — av > 0, x — ax + av > 0, and the inequality (2.1) follows for n € 2N.
Now, for the inequality (2.2) let ¢(1 + 8) = wand 8 # 0 in I. Then we get

oo S+SE—a—1
12 :/ ( u ) lnn(1+5) ( u ) 67u du
0 (1+B)v 1+ B 1+ 8

ziaz_q n(l+h) n
- (15) ) (1)’“( “,;””) In* (1 + 8)

k=0

o T —a-l _k _
X / (E) (A —k (E) e “du.
0o \v v

By using the equation (1.8) we have

1\ et e nEd n(1+ B)
ne(mp) g () wars

k=0
xR p(nOEA =R (1 L ar — av) (2.5)

forr +ar—av>0,>—-1landn(l+8) € N.
Similarly, let ¢(1 — 8) =y and 8 # 0in Is. Then

oo LZ_arin—1
- Yy 3\ ) Y —y_dy
= ((1—/3)'0) : ((1—B)v>e -3

1 z_224q n(l1-5) X n(l—ﬁ) L
~(5)" T e () wa-n

=0

By using the equation (1.8) we get

LS e (= 8)
13:(1_6) Z(—l)’“( ) >ln’“(1—ﬂ)

k=0
x A ZEpA=H=k) (1 _ g 4 aw) (2.6)
forr —az+av>0,<landn(l—p3) eN.

Hence by using the equations (2.4), (2.5) and (2.6) and taking n(1 + 8) € 2N, n(1 — 8) € 2N to guarantee the
positivity of the right-hand side of the inequality (2.3), we get the desired result (2.2). O

Remark 2.2. The inequality (2.1) satisfy the inequality (1.6) forp =1+ o, ¢ = —aw, k(z) = 1 and f = T'{".

Remark 2.3. The inequality (2.2) satisfy the generic form (1.9) for

1

p=1+4+a, g=—-av, k(z)= T az _, T _oz o0
) R O )

130



Ege and Pasaoglu; Arch. Curr. Res. Int., vol. 25, no. 3, pp. 127-134, 2025; Article no.ACRI.131598

ar = (~1)*v" ("(1;5)> (14 B), b = (~1)*v ™" <”(1k ﬁ)) *(1— @) and =T,

Example 2.1. Letn =2 and o = % in the inequality (2.1). Then we get

" n, 3x V", T
[Fv (CL‘)]2 < Fv (? - 7)111) (7 +

forv>0andz > z.
1

Example 2.2. By takingv =1,n =3, a = 3 and 8 = 3 in the inequaliy (2.2), we get

1" 2 %_771 2z - _ 4 Ilk é (4—k) 3£ _ l
(@) <2:7%3 O( Uk(k:)l 3T ( 2 2)
<3 (-1)F </2€ 1n’“(§)r<2*’“> (% + é) (2.7)

forx > 0.

Corollary 2.4. By taking v = 1 and n = 0 in the inequality (2.2) we get inequality for the Gamma function

1
(1 + /8)14»041704(1 _ B)mfaz+a

[D(z))* < I'z+azx—a)T (z—az+ a) (2.8)

forz >0,z +ar—a>0,z—ar+a>0andpc (—1,1) given in (Masjed-Jamei, 2010).
Now we give the following theorem as an application of the inequality (1.5).
Theorem 2.5. Letx,v > 0. Then the inequality
[0 (@) < T0 (2 + az — Bo)T{Y (@ — az + Bv) (2.9)

is valid forx + ax — v >0, x — ax + Bv > 0, n € 2N,
and the inequality

i () < —1)Fuk
[ ( )] - (1_;'_7);4‘7*5(1_7);**4’5 Z ( )

1 n(14+) (n(l )
v k=0

A ) In*(1+~)

n(l—7)
_ - 1-7)
x DA+ =R) (2 4 g — Bo —1)kpF (1= In*(1 -
( g 3 () . (1-7)
x T8 (4 — ag + Bo) (2.10)
is valid for x + ax — Bv > 0, z — ax + Bv > 0 and some v € (—1,1)/{0} such thatn(1+~v), n(1 —v) € 2N.

By substituting [a, b] = [0,00), f(t) = (L) ™, g(t) = (1)_1 h(t) =In™ (L) e~" in the inequality (1.5) we have

oo o1 2 =) —1(148) 14y
([ w(ea) <[ (O () e e
z(l—a)

« /Ooo (%)7 (%) Y (m" (%) ei)u i (2.12)
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Again, for simplicity let

S |

0o 2 "
J1 :/ < ) In" (f) e tdt,
0 v
z(14+a)

o /iy > t —1(1+8) t
Ja :/ -z hd In™At) [ 2 ot g
o v v v
z(1—a)

o =(1- —(1-8)
J3 =/ t t "= t et gt
o v v v

Ji = U"an)(mL Jo =v"T" (z + ax — Bv), Js = van,")(x — az + fv), (2.13)
for x + ax — Bv > 0, x — ax + Bv > 0, and the inequality (2.9) follows for n € 2N.

and

If v = 0 we have

Now, for the inequality (2.10) let (1 + v) = v and v # 0 in J2. Then we get

- 2(ta) g J
u v n(1+47) u —u U

Jo = % In" A+

: /0 ((1+7)v> ! ((Hv)v)e T+7

zyan_g n(1+7) n k
() T (e

k=0
oz _

y /oo (E)% =2 6—11nn(1+n,)_k (E) e du.
0 v v

By using the equation (1.8) we get

1 zyor_g n(lty) n(l +’Y)
J2 = (m) > (—1)’“< . >lnk(1+7)

k=0
x " AN =FPURAEN=R) (1 4 o Br) (2.14)
forz +az —pfv>0,v>—landn(l+v) €N.

For the integral Js let (1 — v) = y and v # 0. Then

= 0 ( Y)v ) " ((1 fy'y)v) efy1dfy7

R =S S C I A N
- (=) Z(l)( ) >ln(1—7)

k=0
az

X /oo (g>%77+ﬁ71 "=k (g) e Vdy
o \w v

Z-azqpn(l—m) n(l —
- (ﬁ) ) (—1)k< (1k 7)) In*(1 )

k=0

x "IN TRpPA=D=R) (1 oz 4+ Bo) (2.15)
forz —az+pfv>0,vy<landn(l—~v)eN.

Hence by using the equations (2.13), (2.14) and (2.15) and taking n(1 + v), n(1 — ) € 2N, the inequality (2.10)
follows.
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Remark 2.6. The inequality (2.9) satisfy the inequality (1.6) forp =1+ o, ¢ = —Bv, k(z) = 1 and f = T'\").

Remark 2.7. The inequality (2.10) is a special case of the main inequality (1.9) for

p=1+a, ¢=—-pv ,k(z)=

ar = (—1)Fv* (n(lljw) n*(1+47), be =

1
A+ FF T A=) T

(—)"* <”(1k7)> m*(1-7) and f=T,.

Corollary 2.8. By taking v = 1 in the inequality (2.9) we get the following inequality

L™ (2))? < T (z + az — HT™ (@ — az + B)

fore >0,z +ax—B>0,z—ax+5>0,nc2N.

Corollary 2.9. By taking v = 1 in the inequality (2.10) we get

™ (@))?

w Tn@+7) k) (z+ az — B)

n(l—=y)

x > <1>k("“ " ”) In* (1= I (@ oz 1 )
k=0

forx >0, z+ar—0>0,z—ax+6>0,v€(-1,1)/{0} andn(1 +~),

3 CONCLUSIONS

In this work, based on the Cauchy-Bunyakovsky-
Schwarz inequality, we introduced an inequality. By
getting some new inequalities, we showed that a one-
parameter deformation of the Gamma function satisfies
this type of inequality. We also show that the established
results are generalizations of some previous ones.
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1 n(1+v) (1 + .
S (1_|_,Y)m+aac—,6(1_,y)x—ax+,8 E (71) ( ( k ’Y)> In (1+’Y)

k=0

(2.16)

n(l —-~) € 2N.
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