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ABSTRACT 
 

This review examines the molecular mechanisms regulating the transition from vegetative growth to 
meiosis across plants and other eukaryotic models. It highlights key genetic pathways controlling 
floral meristem identity, ovule development, and meiotic entry, emphasizing conserved genes and 
regulatory networks in species like Arabidopsis, rice, yeast, and mice. The roles of hormonal 
signals, environmental cues, and nutrient sensing in meiosis initiation are discussed, along with 
mechanisms governing chromosome pairing, recombination, and segregation. Understanding these 
conserved processes offers insights into reproductive development and provides avenues for crop 
improvement and fertility management. 
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1. INTRODUCTION 
 

The transition from vegetative to reproductive 
development is critical for ensuring the species' 
ability to reproduce and sustain itself. This 
process, known as flowering, is tightly controlled 
by a complex interaction of genetic programming 
and environmental inputs. In many plant species, 
including the well-studied model organism 
Arabidopsis thaliana and staple crops such as 
rice, wheat, and barley, the transition to the 
reproductive phase is managed by integrating 
stimuli like as light, temperature, and plant 
hormones (Cheng et al., 2014). The activation of 
genes involved in defining floral meristem 
identity, which initiates flowering and gives rise to 
reproductive organs, is an important step in this 
transformation (Dreni et al., 2007). These same 
signals also prompt meiosis, a unique cellular 
division that reduces the chromosome number 
and promotes genetic variability in gametes 
(Kleckner, 1996). 
 

Plants, like other eukaryotes, go through a highly 
coordinated and complex meiotic process that 
includes prophase I, metaphase I, anaphase I, 
and telophase I, followed by a secondary meiotic 
division (Terasawa et al., 1995). During these 
stages, homologous chromosomes couple, 
recombine, and segregate, ending in the 
formation of haploid gametes. Model systems 
such as Arabidopsis, mice, Drosophila 
melanogaster, Caenorhabditis elegans, and 
Saccharomyces cerevisiae have identified a wide 
range of essential genes that govern meiotic 
events such as chromosomal alignment, 
recombination, and division—examples include 
MSH4 in yeast, Rec8 in mice, and Dmc1 in 
Arabidopsis. Crops such as rice, barley, and 
wheat also contain unique meiotic genes that are 
essential for reproductive efficiency (Muralla et 
al., 2011). 
 

Unravelling the genetic frameworks that control 
flowering and meiosis is not only important for 
understanding plant biology, but it also has 
substantial agronomic implications. By modifying 
these pathways, we can improve crop output, 
resistance, and adaptability (Zickler & Kleckner, 
1999). This review discusses the molecular 
pathways that govern the vegetative-to-
reproductive transition and meiotic control in 
plants and other model organisms. It focuses on 
the conserved genes required for each meiotic 
phase, stressing their significance in evolutionary 
continuity and reproductive optimization in 
species such as Arabidopsis, rice, wheat, yeast, 
and mice. 

2. GENETIC KEYS THAT DRIVE THE 
TRANSITION FROM VEGETATIVE 
GROWTH TO THE FLOWERING PHASE 

 
Flowering plants go through a series of 
developmental steps as they move from 
vegetative to reproductive growth. Okada & 
Shimura, (1994) identify five major steps: 
establishment of the inflorescence meristem, 
specification of the floral meristem, determination 
of floral organ number and placement, 
identification of organ kinds, and final 
development of floral organs. Genetic study in 
Arabidopsis mutants has revealed the presence 
of numerous regulatory genes involved in these 
stages. Ovule formation is an important element 
of the reproductive process, with distinct physical 
distinctions between species. Arabidopsis (a 
dicot) and rice (a monocot) produce anatropous, 
unitegmic ovules, whereas maize, wheat, barley, 
and tomato produce bitegmic ovules (Drews & 
Yadegari, 2004; Wang & Ren 2008; Shi & Yang 
2011). The placenta produces ovule primordia, 
and their development is affected by hormone 
interactions, particularly auxin and cytokinin, as 
well as transcription factors such as PIN1, ANT, 
and the CUC gene family (Balasubramanian & 
Schneitz, 2000; Elliott et al., 1996; Ceccato et al., 
2013). INO, ATS, and WUSCHEL govern the 
asymmetric development of the outer and inner 
integuments (Baker et al., 1997; 
Balasubramanian & Schneitz, 2002; Gross-Hardt 
et al., 2002). In cereals such as rice, wheat, and 
barley, orthologs such as OsMADS13, OsINO, 
and OsWOX9 B play conserved roles that are 
frequently influenced by auxin gradients. These 
regulatory components work together to guide 
precise ovule patterning and megagametophyte 
growth in both monocot and dicot plants. 
 

3. MEIOSIS  
 
In higher plants, meiotic processes are similar to 
those found in other eukaryotes, with conserved 
mechanisms for homologous pairing and 
recombination. However, the molecular signals 
that begin the shift from the diploid sporophyte to 
the haploid gametophyte phase are still poorly 
understood. This generational shift usually 
happens in the late stages of cell differentiation, 
but it may also be intentionally induced in 
undifferentiated tissues, emphasizing the stark 
distinction between sporophyte and gametophyte 
development. 
 
Meiosis, a specialized division crucial for all 
sexually reproducing eukaryotes, consists of a 
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single DNA replication event followed by two 
consecutive nuclear divisions. Meiosis I 
separates homologous chromosomes, whereas 
meiosis II divides sister chromatids in a manner 
comparable to mitosis (Gerton & Hawley 2005). 
The proper production of gametes is dependent 
on precise regulation during prophase I, which 
includes homolog recognition, pairing, 
recombination, and ultimately segregation. 
 

4. ENTRY INTO MEIOSIS I FROM 
MITOTIC CELL DIVISION IN 
ANGIOSPERMS 

 

In flowering plants, meiosis begins in ovules and 
anthers with the transition of subepidermal cells 
into archesporial cells, which grow directly into 
megaspore mother cells (MMCs) without going 
through mitosis (Maheshwari, 1950; Reiser & 
Fischer, 1993). Normally, a single MMC is 
present per ovule, although species such as 
Paeonia calijkica can develop 30-40 MMCs 
(Walters, 1962). Casuarinaceae, Amentiferae, 
Ranales, and several basic dicots all contain 
multiple MMCs (Eames, 1961; Maheshwari, 
1950). 
 

In Arabidopsis, for sporocyte identity to be 
established, interactions between the tapetum 
and meiocytes are essential. Male sterility results 
from mutations lacking EMS1/EXS1 or TPD1, 
which overproduce sporocytes and fail to 
generate tapetal cells (Canales et al., 2002; Zhao 
et al., 2002). Genes like AMS, MS1, and 
AtMYB103 are activated by the receptor kinase 
EMS1/EXS and are necessary for the 
differentiation of microspores and tapetums 
(Yang et al., 2003; Wilson et al., 2001; Sorensen 
et al., 2003; Higginson et al., 2003). MSP1 builds 
the anther wall and limits sporocyte development 
in rice. Excess sporocytes and deformed anthers 
are produced by mutants that lack this function 
(Nonomura et al., 2003). One hypodermal cell in 
maize serves as the MMC in 
pseudocrassinucellate ovules, becoming more 
deeply embedded as the ovule grows (Randolph, 
1936; Cooper, 1937). 
 

5. NUTRITIONAL CUES AND 
REGULATORY PATHWAYS FOR 
MEIOSIS INITIATION IN YEAST AND 
OTHER MODEL ORGANISMS 

 

The start of meiosis in Saccharomyces 
cerevisiae is directly related to the availability of 
nutrients. Carbon and nitrogen deprivation 
decrease the activity of important metabolic 

regulators such as Target of Rapamycin 
Complex I (TORC1) and protein kinase A (PKA). 
This activates the transcription factor IME1, 
which in turn triggers the induction of more than 
300 genes required for meiosis (Weidberg et al., 
2016; Chu et al., 1998; Primig et al., 2000). By 
phosphorylating and targeting Sic1, a cyclin-
dependent kinase inhibitor, for degradation, 
another kinase, IME2, promotes entry into 
meiosis (Dirick et al., 1998; Benjamin et al., 
2003). Meiosis is also disrupted by disruptions in 
tRNA genes like SUP3, which affect DNA 
replication and spore formation by causing 
incorrect translation termination (Liebman et al., 
1976; Rothstein et al., 1977). According to Dirick 
et al., (1998), Stuart & Wittenberg (1998), and 
Smith et al. (2001), B-type cyclins CLB5 and 
CLB6 are necessary for premeiotic DNA 
replication and may also control recombination 
and the creation of synaptonemal complexes.  
 

Meiosis in Schizosaccharomyces pombe is 
regulated via a unique mechanism. In budding 
yeast, the transcription factor Ste11 performs a 
similar role to IME1 (Yamamoto, 1996; 
Honigberg & Purnapatre, 2003). Pat1, a kinase 
that maintains Mei2 phosphorylated throughout 
mitosis, ordinarily represses the RNA-binding 
protein Mei2, which mediates entry into meiosis. 
Mei2 can go to the nucleus and start meiosis 
when Pat1 is deactivated due to hunger 
(Yamamoto, 1996; Marston & Amon, 2004). 
Phosphorylation-based control governs Mei2's 
interactions with Mip1p (Yamashita et al., 1998; 
Sato et al., 2001; Shinozaki-Yabana et al., 2000; 
Shimada et al., 2003). Despite continuing mitotic 
cycles, mutations in Mei1, Mei2, or Mei3 stop 
meiosis at the mononucleate stage (Egel, 1973), 
while Mei4 mutants do not advance following 
DNA replication (Bresch et al., 1968; Egel, 1973; 
Egel & Egel-Mitani, 1974). 
 

Repetitive routes involving gld-1 and gld-2, which 
can independently induce meiosis, regulate 
meiotic entry in Caenorhabditis worms (Kadyk & 
Kimble, 1998). Likewise, in Drosophila, meiotic 
development in both sexes depends on the 
Cdc25 homolog Twine. Due to reduced meiotic 
division, sterility resulted from mutations that 
disrupt twine, such as mat(2)synHB5 (Courtot et 
al., 1992; White Cooper et al., 1993). According 
to Zhang et al. (2025), MTR4, a critical cofactor 
of the nuclear RNA exosome, is essential for 
sperm production as well as embryonic 
development. Male infertility results from targeted 
ablation of Mtr4 in germ cells, mainly because 
animals exhibit a marked impairment in the onset 
of meiosis. 



 
 
 
 

Suguna and Winnie; Arch. Curr. Res. Int., vol. 25, no. 5, pp. 404-418, 2025; Article no.ACRI.135465 
 
 

 
407 

 

6. Sexual Dimorphism in Meiosis 
Initiation in Mammals: A Complex, 
Sex-Specific Regulation 

 

Males undergo a cyclical pattern of meiosis after 
birth, while females undergo it throughout 
embryogenesis (Juliano & Wessel, 2010; 
Lehmann, 2012). Gametes are produced by 
primordial germ cells (PGCs); females generate 
oocytes before birth, while males produce sperm 
after puberty. Both sexes undergo meiosis when 
exposed to retinoic acid (RA) from the 
mesonephros (Bowles et al., 2006; Koubova et 
al., 2006). However, Cyp26b1 degrades RA in 
the embryonic testes, preventing meiosis, 
whereas in the ovaries, its absence permits 
meiosis to proceed (Bowles et al., 2010). Meiotic 
initiation requires the transcription factor Stra8, 
which is activated by RA. To guarantee exact 
timing, Cyp26b1 activity regulates Stra8 
expression (Koubova et al., 2006). Signalling 
molecules such as FGF9 and Cyp26b1 inhibit 
meiosis in the testes to preserve germ cell 
pluripotency, while RA activates Stra8 in the 
ovaries and postnatal testes, starting meiotic 
entry and premeiotic DNA synthesis. For both 
sexes, MEIOSIN, a partner of Stra8, further 
guarantees proper meiotic development 
(Anderson et al., 2008; Ishiguro et al., 2020). 
 

7. KEY PLAYERS AND MECHANISMS IN 
PROPHASE AND ITS SUBPHASES IN 
MEIOSIS 

 

The extended prophase I stage of meiosis 
includes leptotene, zygotene, pachytene, and 
diplotene subphases, and involves numerous 
gene-mediated steps for chromosomal pairing 
and synapsis. In maize, the ameiotic1 (am1) 
gene is indispensable for meiotic initiation; its 
mutants halt at interphase, similar to defects 
seen in Stra8-mutant mice (Pawlowski et al., 
2009). The rice homolog OsAM1 facilitates the 
leptotene-to-zygotene transition, and mutants 
lacking OsAM1 arrest at leptotene, displaying 
disrupted recruitment of proteins like PAIR2, 
ZEP1, and OsMER3 (Che et al., 2011). 
 

One important occurrence in early meiosis is 
telomere migration. Telomere attachment to the 
nuclear envelope in maize is made possible by 
proteins such as Ku and Nup145 (Strambio-de-
Castillia et al., 1999). Areas of the envelope 
where the synaptonemal complex anchors are 
indicated by Lamin C2 (Alsheimer et al., 1999). 
Ndj1p and Taz1p are essential for bouquet 
formation and effective chromosomal pairing in 

budding and fission yeasts, and their mutations 
cause meiosis to be delayed (Conrad et al., 
1997; Trelles-Sticken et al., 2000). Through the 
recruitment of SETDB1 to sex chromosomes and 
autosomal regions, the germline-specific protein 
ATF7IP2 (MCAF2) controls heterochromatin 
organization during male meiosis. Meiotic 
development is disrupted when it is absent 
(Alavattam et al., 2024). 

 
8. MEIOTIC CHROMOSOMAL PAIRING 

AND SYNAPSIS: KEY GENES AND 
THEIR ROLES ACROSS SPECIES 

 
A key component of chromatid cohesion is the 
cohesin complex. Yeast's Rec8p and other 
meiosis-specific components provide appropriate 
cohesion (Molnar et al., 1995). When Smc1β is 
mutated in mice, the synaptonemal complex 
structure is impaired, resulting in meiotic arrest 
and sterility (Revenkova et al., 2004). Like those 
without zip1, yeast msh4 mutants show fewer 
crossovers (Novak et al., 2001). 
 
Multiple conserved genes work together to form 
the synaptonemal complex (SC), which is 
necessary for homologous chromosome 
synapsis and crossover during meiosis. 
According to Siddiqi et al. (2000), mutations in 
the gene DYAD cause univalent formation and 
interrupted progression, as it is essential for 
female meiotic synapsis in Arabidopsis thaliana. 
For sister chromatid cohesion and bivalent 
formation, the yeast Rec8 homolog SYN1/DIF1 
gene is essential (Bai et al., 1999; Bhatt et al., 
1999). Crossover formation is supported during 
meiosis by RCK, the plant homolog of yeast 
MER3 (Chen et al., 2005). The heterodimer of 
the genes AtSPO11-1 and AtSPO11-2 is 
necessary for recombination and the creation of 
double-strand breaks (DSBs); as their mutants 
are unable to establish bivalent bonds or 
synapses (Grelon et al., 2001; Stacey et al., 
2006). Chromosome fragmentation is a symptom 
of loss-of-function mutants of MRE11, RAD50, 
and COM1, proteins involved in DSB processing 
and repair (Puizina et al., 2004; Uanschou et al., 
2007). 
 
The HORMA-domain protein PAIR2 plays a 
crucial role in the establishment of SC and 
chromosomal architecture in rice, as evidenced 
by its association with chromosome axes during 
early prophase I and persistence at centromeres 
until diakinesis (Nonomura et al., 2006). PAIR3 is 
also essential for homolog synapses, and when it 
is disrupted, bivalent formation fails, leading to 
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sterility (Yuan et al., 2009). The deletion of ZEP1, 
which forms the transverse filament of the SC 
and is comparable to ZYP1 in Arabidopsis, 
causes chromosomes to align but not synapses 
(Wang et al., 2010). Recombination and SC 
integrity depend on OsRAD51C, a homolog of 
human RAD51C; mutations show chromosomal 
breakage and sterility (Tang et al., 2014). ZEP1 
collaborates with the plant-specific protein CRC1, 
which is similar to TRIP13 in mice and Pch2 in 
yeast, to enhance meiotic growth and construct 
the SC core (Miao et al., 2013). Homologous 
pairing and bivalent formation depend on 
OsDMC1, and meiotic abnormalities result from 
its downregulation (Deng & Wang, 2007). The 
rice ortholog of SPO11, OsSPO11-1, controls the 
development of DSBs and crossovers; its 
mutants create telomere bouquets but are unable 
to construct SC and crossover (Yu et al., 2010; 
Wu et al., 2015). OsSDS, PRD1, PRD2, 
AtPRD3/OsPAIR1, and DFO are other DSB-
associated genes in rice that show functional 
conservation with animal meiosis and yeast 
(Nonomura et al., 2004; De Muyt et al., 2007, 
2009; Zhang et al., 2012). 
 
According to Pawlowski et al. (2004), phs1 is 
essential for homolog detection and 
recombination in maize. Mutants that lack 
RAD51 foci and exhibit nonhomologous pairing 
demonstrate a breakdown in recombination 
initiation. DMC1's conserved function in meiotic 
processes is further supported by the fact that it 
is essential for appropriate DSB repair and 
chromosomal segregation in barley (Szurman-
Zubrzycka et al., 2019). 
 
In mammals, SYCP3 is a structural element of 
the SC that is necessary for cohesion and 
synapsis; females show decreased fertility and 
aneuploidy, whereas males that have been 
knocked out are sterile because of meiotic arrest 
(Yuan et al., 2000; Kouznetsova et al., 2005). 
Synapsis and spermatogenesis are disrupted by 
the mei1 mutant; male fertility can be partially 
restored by cisplatin treatment (Libby et al., 
2002, 2003). Male infertility results from meiotic 
disruption caused by loss-of-function in genes 
such as Dmc1, Msh4/5, and Rec8 (Pittman et al., 
1998; Yoshida et al., 1998; Edelmann et al., 
1999). DSB repair during meiosis is regulated by 
Cyclin A1, CDK2, and Ku70 (Muller-Tidow et al., 
2004; Fuchimoto et al., 2001). Male mice lacking 
Miwi are infertile, whereas female mice are still 
fertile, and male mice lacking Mili are sterile 
compared to female mice that are fertile 
(Kuramochi-Miyagawa et al., 2004; Deng & Lin, 

2002). DSB induction requires SPO11, which is 
preserved. Males with prophase arrest are 
infertile, although cisplatin can partially rescue 
them (Romanienko & Camerini-Otero, 2000). 
Both Romanienko and Camerini-Otero (2000) 
and Baudat et al. (2000) have reported that 
female Spo11−/− mice lose their oocytes after 
birth. 
 

9. HOMOLOGOUS RECOMBINATION: 
KEY MECHANISMS AND INSIGHTS 

 
The precise segregation of chromosomes and 
genetic diversity is guaranteed by homologous 
recombination. In plants such as Lilium 
longiflorum, where Rad51 and LIM15 (DMC1) 
localize to recombination sites in early prophase, 
Rad51 and DMC1 play a crucial role in 
recombination (Roeder, 1995). LIM15 expression 
is limited to early meiosis, in contrast to other 
LIM genes with pre-meiotic expression. The 
existence of similar proteins in yeast 
(ISC2/Isc10) and Antirrhinum majus (fil1) 
supports evolutionary conservation (Kobayashi et 
al., 1994). 
 
According to Meuwissen et al. (1992), SCP1 is 
necessary for SC formation and pairing in mice. 
Female oocytes halt postnatally when Cdk2 is 
deleted; male meiosis is unaffected (Ortega et 
al., 2003). Mei-2 and asc(DL243) mutations in 
Neurospora damage pairing, decrease 
recombination, and result in chromosome 
missegregation (Smith, 1975; DeLange & 
Griffiths, 1980). 
 
Recombination and sister chromatid cohesion in 
Arabidopsis depend on SWI1 (Mercier et al., 
2001, 2003). OsSUN1 and OsSUN2 in rice 
encourage homologous pairing and telomere 
clustering; double mutants show impaired meiotic 
chromosomal organization (Zhang et al., 2020). 
The coordination of recombination and DNA 
repair is highlighted by mutants such as Osatm 
and Osdmc1, where OsATM functions 
downstream of OsSPO11-1 and interacts with 
OsDMC1 to preserve chromosomal integrity 
(Zhang et al., 2020). 
 
The pachytene-to-diplotene transition in mice 
requires Cyclin A1, and mutants of Mlh1 and 
Mlh3 halt during meiosis, resulting in delayed 
meiosis in females and sterility in males because 
of more stringent checkpoints (Liu et al., 1998; 
Lipkin et al., 2002; Eaker et al., 2002; Edelmann 
et al., 1996). While females are unharmed, men 
with Fkbp6 deficiency are sterile because of early 
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prophase I failure (Crackower et al., 2003). 
Through the activation of mid-meiotic genes, 
Ndt80 guides the advancement of S. cerevisiae 
beyond early meiosis; its activation is checkpoint-
dependent to guarantee recombination 
completion (Xu et al., 1995). Meiotic and 
sporulation abnormalities are revealed at 
different stages by different spo mutants 
(Esposito and al., 1970; Moens et al., 1974). 
 

10. MEIOTIC METAPHASE AND THE 
ROLE OF KEY GENES IN 
CHROMOSOME DYNAMICS 

 
Chromosome alignment and segregation 
preparation occur during the critical                  
meiotic phase known as metaphase I. By 
facilitating the passage from prophase I to 
metaphase I, the protein SKP1 is essential to 
male meiosis. It stops chromosomal pairing 
structures from disassembling too soon and 
localizes to the synaptonemal complex (Guan et 
al., 2020).  
 
Organisms like Caenorhabditis elegans and 
Arabidopsis contain several Skp1-related genes, 
but species like yeast, mice, and humans only 
have one Skp1 gene (Nayak et al., 2002; Zhao et 
al., 2003). By controlling proteins that uphold 
homologous connections, ASK1 helps 
Arabidopsis separate homologs before   
anaphase I (Yang et al., 1999). In Arabidopsis, 
appropriate spindle assembly is controlled by the 
ATK1 gene. Spindle structure is disturbed in 
atk1-1 mutants, resulting in aberrant multi-axial 
arrays that cause improper chromosomal 
segregation during metaphase I (Chen et al., 
2002).  
 
In maize, the afd1 gene interacts genetically with 
dv1, dsy1, and as1, which are likewise important 
for chromosomal mobility and synapsis, and is 
necessary for centromere cohesion and spindle 
orientation (Golubovskaya et al., 1993).  
 
During metaphase I, OsMTOPVIB in rice 
transforms multipolar spindles into bipolar ones; 
if this function is lost, spindle development is 
flawed (Xue et al., 2019). It is hypothesized that 
PRD1 influences sister kinetochores' alignment 
to promote the development of a bipolar spindle 
during rice meiosis (Shi et al., 2021). During 
meiosis I, proteasomal activity is essential in rat 
oocytes. Protease inhibition slows MPF 
(maturation-promoting factor) deactivation and 
prevents polar body extrusion, indicating that the 
proteasome aids in exiting metaphase I 

(Josefsberg et al., 2000). Additionally, rice 
OsMRE11 contributes to chromosome integrity; 
mutants show chromosome breakage and 
entanglements during metaphase and anaphase 
I, indicating its significance in structural 
maintenance and homologous recombination (Ji 
et al., 2013). 
 

11. KEY PLAYERS IN THE TRANSITION 
FROM METAPHASE I TO ANAPHASE I 

 
In meiosis, precisely regulated regulatory 
proteins and kinases are involved in the 
transition from metaphase I to anaphase I. For 
this transition, the CDC28 kinase's regulatory 
component CKS2 is necessary. Male mice 
deficient in CKS2 have anaphase I arrest, which 
results in sterility (Spruck et al., 2003). Spindle 
stability and oocyte maturation in mice during this 
phase are guaranteed by ERK3, another crucial 
regulator (Li et al., 2010). The anaphase-
promoting complex/cyclosome (APC/C) in C. 
elegans is home to the gene EMB-30, which is 
similar to APC4/Lid1 and regulates the onset of 
anaphase by ubiquitin-mediated degradation 
(Furuta et al., 2000). 
 
According to Choi et al. (2019), Spindlin1 
controls the expression of the spindle checkpoint 
protein BUB3, which is necessary for precise 
metaphase-anaphase progression in swine 
during meiosis I. Furthermore, through its 
interactions with APC/C and increased 
phosphorylation of APC3, Cyclin B3 (CycB3) 
facilitates the start of anaphase and increases its 
affiliation with coactivators such as Cdc20 during 
meiosis and mitosis (Garrido et al., 2020). The 
expression of AMA1, a member of the Cdc20 
family, is dependent on the splicing factor           
MER1 and specifically regulates APC/C          
activity during meiosis in yeast (Cooper et al., 
2000). 
 

12. TRANSITION FROM MEIOSIS I TO 
MEIOSIS II: KEY REGULATORS AND 
MECHANISMS 

 

Meiosis I to II progression is strictly controlled 
and varies from organism to organism. The 
transcription factor SAP is essential for female 
meiosis in Arabidopsis. Sap mutants exhibit 
severe reproductive abnormalities and are 
unable to initiate meiosis II (Byzova et al., 1999). 
APC/C targets securin for degradation, which is 
necessary for this transition, and so activates 
separase in mouse oocytes. Both S. cerevisiae 
and C. elegans share this mechanism (Terret et 
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al., 2003). According to Grandin & Reed (1993), 
B-type cyclins CLB1 and CLB4 are essential for 
meiosis II in yeast but not for meiosis I. 
 
In vertebrates like starfish, the proto-oncogene 
Mos controls the progression to meiosis II, 
preventing oocytes from prematurely              
reentering the mitotic cycle (Tachibana et al., 
2000). To fine-tune APC/C activity and enable 
oocytes to escape meiosis I and avoid S             
phase before entering meiosis II, Emi2              
proteins in Xenopus induce partial degradation of 
cyclin B (Tang et al., 2008). Mes1 controls the 
interphase between meiotic divisions in             
fission yeast by modifying APC/C coactivators 
such as Fzr1/Mfr1 and Slp1 (Kimata et al.,  
2011). 
 
In Drosophila, cyclin A levels during the G2 
phase are controlled by roughex (rux), which 
controls entry into meiosis II during 
spermatogenesis. Mutations in rux throw off this 
timing and stop progression (Gonczy et al., 
1994). According to Bulankova et al. (2010), 
CDKA;1 activity in plants peaks during 
metaphase I and II, propelling meiotic 
progression. According to Marston & Amon 
(2005), precise exit from meiosis I and entry into 
meiosis II depend on the proper regulation of 
cyclin-CDK complexes and APC/C activity during 
interkinesis. 
 
Although the meiosis regulatory phase is 
supported by the cyclin-CDK-APC/C network in 
all species, its molecular actors differ. Mes1 
controls the transition in S. pombe, while OSD1 
operates in plants, and Emi2 does the same in 
vertebrates (Izawa et al., 2005; Kimata et al., 
2008; Madgwick et al., 2006). To guarantee 
meiotic exit in Arabidopsis, genes like TAM (a 
cyclin A), OSD1 (an APC/C inhibitor), SMG7 
(associated with RNA degradation), and TDM 
work together. TDM mutants go through a third 
aberrant division, whereas TAM or OSD1 
mutants stop after meiosis I. Anaphase II 
advancement depends on SMG7, which also 
shows a link between meiotic regulation and 
RNA metabolism (Bulankova et al., 2010; 
Cromer et al., 2012). The RNA-processing 
domain found in AtPS1 facilitates this regulatory 
network as well (d’Erfurth et al., 2008). Lastly, 
the STUD gene is required for Arabidopsis 
cytokinesis during telophase II to promote the 
generation of viable male gametes (Hülskamp et 
al., 1997). Spindle reassembly was hampered 
and abnormal post-meiotic divisions were curbed 
in smg7-6 plants due to a CENH3 mutation that 

increased meiotic exit by lowering CENH3 levels 
(Capitao et al., 2021). 
 

13. CONCLUSION 
 
Meiosis is controlled by a mix of species-specific 
regulatory networks and conserved mechanisms 
that work together to guarantee faithful 
chromosomal segregation and meiotic cycle 
completion. The orderly transition from 
metaphase to anaphase is maintained by 
essential elements such as SKP1, spindle 
assembly regulators, and the APC/C complex. 
Tightly regulated cyclin-CDK and APC/C activity 
support the transition from meiosis I to II, and 
various species use distinct regulatory proteins 
such as Mos, TAM, OSD1, and SMG7 to ensure 
meiosis integrity. 
 
A delicate balance between shared genetic 
modules and organism-specific adaptations is 
highlighted by the evolutionarily conserved core 
pathways that govern meiotic progression, 
although regulatory techniques vary among 
animals. A better comprehension of these 
mechanisms contributes to our understanding        
of genetic integrity and reproductive  
development and offers prospective paths toward 
increasing fertility and refining crop breeding 
techniques. 
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