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ABSTRACT

In this study, we introduce the concept of Gaussian Generalized Adrien numbers, a novel extension within the
framework of special number sequences. Our focus centers on two particular instances: the Gaussian Adrien
numbers and the Gaussian Adrien-Lucas numbers. We systematically investigate and establish fundamental
properties of these sequences, including closed-form identities, recurrence relations, matrix formulations,
and Binet-type expressions. Additionally, we derive their generating functions, explore their connections with
exponential functions, and present analogues of Simson’s and summation formulas. These results contribute to
a deeper algebraic and combinatorial understanding of the Gaussian extensions of Adrien-type numbers and
open pathways for further research in number theory and related fields.
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1 INTRODUCTION: AN OVERVIEW OF
GENERAL LINEAR RECURRENCE
RELATIONS

Second-order, third-order, and fourth-order linear
recurrence relations are particular cases of the more
general k-th order linear recurrence relations. These
describe sequences in which each term is a linear
combination of a fixed number of preceding terms. A
homogeneous linear recurrence relation of order & is
defined as:

an = Alan—l + A2an—2 +--- 4+ Ak:anfky

where A, As, ..., Ay are constant coefficients and the
initial terms ao, a1, ..., ar—1 are given.

forn >k,

Examples of Specific Orders:
+ Second-order:
an = Aan—1 + Ban—2

Characteristic equation:

22— Axr—B=0
* Third-order:
an = Aanfl + Ban72 + Canf?)

Characteristic equation:

22— Ax> — Bz —C=0
Fourth-order:
an = Aanfl + Ban72 + Ca”n,fS + Dan74

Characteristic equation:

2t —Ax* —Bz? —Cz—-D=0

The general solution to a linear recurrence
relation depends on the roots of its characteristic
equation. If the characteristic polynomial has &
distinct roots r1, 72, ..., 7%, then the solution can
be expressed as:

n n n
an = o171 + aery + -0+ Ty,

where ai,az,...,a, are constants determined
by the initial conditions. If some roots are
repeated or complex, the solution will include

polynomial or trigonometric modifications such
as:

an = (P(n)r™)
depending on whether the roots are repeated
real or complex conjugates.

An inhomogeneous linear recurrence includes a non-
zero function on the right-hand side:
an = Atan_1+ -+ Axan—i + f(n),

where f(n) is a function of n. The general solution is
the sum of the homogeneous solution and a particular
solution of the nonhomogeneous relation.

Higher-order recurrence relations are fundamental in:
+ Combinatorics:
tilings, and paths.
+ Computer Science:
dynamic programming.
+ Mathematical Physics: Discrete dynamical
systems and numerical schemes.

* Number Theory: Generalizations of Fibonacci,
Lucas, and other integer sequences.

Enumeration of partitions,

Algorithm analysis and

2 BACKGROUND
NUMBERS

ON ADRIEN

In this section, we present key foundational results on
Adrien numbers, which are governed by a fourth-order
homogeneous recurrence relation.

The generalized Adrien sequence {W,}n>o =
{Wn(Wo, W1, W, W3)},>0 is defined by the fourth-
order recurrence relation as

Wi =3Wn_1— Wn_2 — Wan_a, (2.1)
with the initial values Wy, W1, W», W3 not all being zero.

The sequence {W,},.>o0 can be extended to negative
subscripts by defining

W_pn = _Wf(n72) + 3W7(n73) - W7(7L74)7

for n = 1,2,3,.... Hence, recurrence (2.1) holds for
all integer n.Soykan has conducted a study on this
particular sequence, for more details, see (Soykan,
2023a).
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Characteristic equation of {W,} is
23l 1= -2 —2—1)(2—1) =0,

whose roots are

1/3 1/3
W 2 (e, T (e [
3 54 36 54 6 ’
1/3 1/3
ﬂ—g—FwQ—O—% +w2g—§
3 54 36 54 36 ’
1/3 1/3
_o2, e, [\, (e 2
T T3 54 36 54 6]
5 = 1,
where _
w= _1%“/5 = exp(2mi/3).
Note that
at+B+y+d = 3,
af+ay+ad+By+Bi+v = 1,
afy+aBé+ays+pys = 0,
afyd = 1.
Note also that
atf+y = 2
aft+ay+py = -1,
afy = 1.
pr = Wi—(B+7+8)Wa+ (By+ B +~v3)Wi — BydWo,
p2 = Ws—(a+v+)Wa+ (ay + ad +v8)W1 — aydWo,
p3 = W3 — (Oé + B + (5)W2 + (Oéﬁ + ad + ﬂé)W1 — aﬂ(SWo,
pa = Wis—(a+B+7)W2+ (af+ay+ By)W1—afyWo,
where
p1
A = ,
' (a = B)(a—=7)(a—13)
D2
Ay = :
’ (B—a)(B—7)(B—9)
D3
As = ,
’ (v—a)(y—=B)(v—9)
Ay = P4

=)0 =B)6—7)
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Forn =1,2,3.... Hence, recurrence (2.1)is true for all integer n.

For the fourth-order reccurrance relations has been studied by many authors, for more detail see (Soykan, 2020b,
2023c,e,b, 2025, 2023d, 2021f,e).

We now present Binet’s formula for the generalized Adrien numbers.

Theorem 2.1. 2023 Binet formula of generalized Adrien numbers can be presented as follows:

(aWs — a3 — a)Wa + (—a® + (3 — D+ 1)W1 — Wo)a™

Wn = 402 + 30— 1
L (BWs = B3 = B)Wa + (=8> + B-1)B+ 1)W1 — Wy)B"
482 +38—1
L OWs =B =)Wa+ (=" + B = )y + YW1 = Woly"
492 +3v -1
LW = 2Ws — Wi = Wo

-3

Now we define two special cases of the sequence {W, } as follows: The Adrien sequence {A,}.>0 and the
Adrien-Lucas sequence { B}, >0 are defined, respectively, by the fourth-order recurrence relations as:

An = 3An71 — Anfg — An74 ) Ao = O7 A1 = 1, A2 = 37 A3 = 8, n Z 4, (22)
Bn = 3Bn71 — ang — Bn74 5 B() = 4, B1 = 3, B2 = 7, Bg = 18, n Z 4. (23)

The sequences {A,}.>0, {Bn}n>0, can be extended to negative subscripts by defining,

Ay = A (o) +3A_(n_s) — A_(n_v),
B, = —B_(n_2)+3B_(n_3)— B_(n_y.

forn =1,2,3, ... respectively. As a result, recurrences (2.2)-(2.3) hold for all integer n.Binet’s formulas as follows.
Now we introduce Binet’s formula of Adrien and Adrien-Lucas numbers.

Corollary 2.2. For all integers n, Binet's formula of Adrien and Adrien-Lucas numbers are

(20® + a4+ 1)a” N @282 +8+1)B" | 2 +y+1)"

1
A, = - =,
402 +3a—1 462 + 35 -1 49243y -1 3

and

Bp=a"+ 8" +4" 4+ 1.
respectively.

Lemma 2.3. Suppose that fw, (z) = i W.,z" is the ordinary generating function of the generalized Adrien

n=0
sequence {W,}. Then, > Wy,z" is given by
n=0
i n Wo+ (Wi —3Wo)z + (Wa — 3W1 + Wo)2? 4+ (W3 — 3We + W) 2°
Wnz" = .
1—-3z+22+24

n=0
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Proof. Take r = 3,s = —1,t = 0,u = —1 in Lemma (Soykan, 2023a). O

Next, we give some information about Gaussian sequences from literature.
» Horadam (1963) introduced Gaussian Fibonacci numbers and defined by
GFn :Fn‘f’Zanl

where F,, = F,_1 + F—2, Fo = 0, F1 = 1 (in fact, he defined these numbers as GF,, = F,, +iF,+1 and he
called them as complex Fibonacci numbers.

» Pethe and Horadam (1986) introduced Gaussian generalized Fibonacci numbers by

GFn = Fn + 7:an17
where F,, = F,,_1 + anz, Fo = 0, Fy=1.

« Halici and Oz (2016) studied Gaussian Pell and Pell Lucas numbers by written , respectively,

GP, Py +iPp-1,
GQn = Qn + Z'CQn—L

We give some Gaussian numbers with second third recurence relations.

* Yiimaz and Soykan (Yilmaz and Soykan, 2023) studied Gaussian Guglielmo and Guglielmo-Lucas numbers
by written respectively,

GTn = Tn+iTn717
GH, = Hp,+ilH, 1,

where T, = 3Ty,—1 — 3Ty —o + Tn_g,TQ = 0, T, = 17 Ty = 3, and H, =3H,,_1 —3H,_» + Hn_g,
Ho=3,H, =3, Hs = 3.

» Dikmen (2025) presented Gaussian Leonardo and Leonardo-Lucas numbers by written respectively,

Gln = ln +Z‘ln71,
GHn = Hn +iHn—17

where lp =211 — ln73,l0 = 1,[1 = 1,l2 = 37 and H,=2H,_ 1 — ang, Hy = 37 H, = 2, Hy = 4.

* Ayrilma and Soykan (2025) presented Gaussian Edouard and Edouard-Lucas numbers by written respectively,

GEn = En +’L‘En717
GKn - Kn +7:an17

where En,=TE,_1—-TE, 2+ Enfi’)a Ey = 07 E = 17 E> = 77 and Ky, =TKn_1—TKn_2+ Kn737
Ko=3,K1 =7, K, = 35.

» Soykan et al. (2023) describe Gaussian Bigollo and Bigollo-Lucas numbers by written respectively,
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GBn = B’n + iBn—h
GC’rL = On + 7;0n717

where B, =4B,_1 — 5Bn_2 + 2Bn_3, By = 07 By = 1, B> = 4 and Cn,=4Cp-1 —5CH_2 + QCn_g,
Co=3,C1 =4,Cy =6.

» Eren and Soykan (2023) describe Gaussian Woodall and Woodall-Lucas numbers by written respectively,

GRn = Rn + iRn—h
Gcn = Cn + 7;Cn—17
where R, = 5R,_1 — 8R,_2 + 4R, -3, Ro = —1,R1 = 1,Rs = T7,, and C,, = 5C,_1 — 8Cp_2 + 4Cn_3,

Co=1,C1=3,C2=09.

Next, we give the exponential generating function of Z W, &+ of the sequence W,.
n=0

W, ”;—T is the exponential generating function of the generalized Adrien

18

Lemma 2.4. Suppose that faw, (z) =

n=0

sequence {W,}.

Then E W, 2 is given by
n=0
i L _ (aWs—aB3—a)Wa+ (—a® + (3 — Da+ )W — Wo)e‘”
= " n) 402 +3a—1

n (BWs — BB = B)Wa + (=B*+(3—1)B+ 1)W1 — WO)eBz

462 +38—1
LOWs =B - y)Wa + (" + B =1y + YW1 — Wo) e (Ws —2Wo — Wi — WD)eac
42+ 3y -1 -3 '
Proof: Using the Binet’s formula of generating Adrien numbers we get
"nl 402 +3a—1  4B2+38—-1 49243y -—1 -3 n!

n=0

& n n & n n
B D D e
402 +3a — 1 n! < 46%+ 35 — 1 n! Ay + 3y —

(Wa = 2Wa = Wi = Wo o
+Z —

)L

n!
n=0
W3 —=2Wy — W1 — Wo 5.

_ p1 €T 4 P2 Bz P3 L 3 2 1 057

40?1 3a -1 1B +38-1° 1y 13y-1 _3

The previous Lemma 2.4 gives the following results as particular examples.
Corollary 2.5. Exponential generating function of Adrien and Adrien-Lucas numbers

&, x" © (2% +a+Da™ (282 +B+1)B" (2 H+y+1)y" 12"
Ap=— = - =)=
a) X A= X (s et T aErsio1 T a3 -1 3
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(20 +a+1) . B+B+1) 4 ¥ +y+1)y" . 1

it i3 1 Tupaaso1° T aEia o1 ¢ 3%
b) Zanf,— Z(a”+6"+v"+1+)xﬁ:e“””+e’3"+e“’””+e“.
n=0 n: n=0 n!

3 GENERALIZED GAUSSIAN ADRIEN NUMBERS

In this section, we introduces Gaussian numbers and explores some of their key properties including Binet’s
formula and generating functions.

Gaussian generalized Adrien numbers {GW,, },>0 = {GW,(GWo, GW1, GW2, GW3) },>0 are defined by

GWn = SGanl - GWn72 - GWn747 (31)
with the initial conditions
GWo = Wo+i(3Wa — Wi — Wa),
GWl = Wl + iWO,
GW2 - W2 + in,
GW3 = W3+ iWs.

not all being zero. The sequences {GW, }..>o can be extended to negative subscripts by defining

GW_, = _GW_(n_Q) + 3GW_(n_3) — GW_(n_4). (3.2)
forn =1,2,3,.... Thus, recurrence (3.1) hold for all integer n. Note that for all integers n, we get

GW,, = Wy +iWy_1, (3.3)
and

GW_p=W_p +iW_p_1. (3.4)

The first few generalized Gaussian Adrien numbers with positive subscript and negative subscript are presented
in the following Table 1.

Table 1. The first few generalized Gaussian Adrien numbers with positive subscript

n GW,

0 Wo + i(3W2 — Wi+ —Wg)
1 Wi+ iWy

2 Wa 4+ iWh
3
4
5

W3 +iWs
3Ws3 — Wy — Wy + iW3
8W3 — Wy — 3Ws — 3Wy + Z(3W3 — Wy — Wy + ’LW3)

and with a negative subscript shown in Table 2.

We can define two special cases of GW,, : GW,(0,1,3 + 7,8 + 3i) = GA, is the sequence of Gaussian Adrien
numbers , GW, : (4,3 + 44,7 + 34,18 + Ti) = GB,, is the sequence of Gaussian Adrien-Lucas numbers.
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Table 2. The first few generalized Gaussian Adrien numbers with negative subscript

GW_,
W3 + i(3W2 — Wi — W3)
3SWo — W, — W3 + Z(3W1 — Wy — Wz)
3Ws3 + Wy — Wo + ’i(3Wo — 3Ws + W3)
3Wo — 3Ws + W3 + i(lOWQ —6W1 — 3W3)
10Wy — 6W1 — 3W35 + i(10W1 —6Wp — 3W2)
10W7 — 6Wy — 3Ws + i(lOWo + 3W, — 18W5 + 6W3)

T W= O3

So Gaussian Adrien numbers are defined by

GAp =3GAn_1 — GAp s — GA,_4, (3.5)

with the initial conditions

GAy=0,GA1 =1,GA2 =3+1i,GAs = 8+ 3i.

Gaussian Adrien-Lucas numbers are defined by

GB’IL = 3GB7L*1 - GanQ - GB7L74> (36)

with the initial conditions

GBo =4+4i,GB; =3+ 4i,GBs = 7+ 3i,GB3 = 18 + Ti.
GAn = An + 7:1477,71,
GB, = B, +iB,_1.
The first few values of Gaussian Adrien numbers, Gaussian Adrien-Lucas numbers, with positive and negative

subscript are given in the Table 3.

Table 3. Special cases of Gaussian generalized Adrien numbers and Gaussian Adrien-Lucas numbers
with positive and negative subscripts

n 0 1 2 3 4 5 6 7 8
GA, 0 1 3+ 8+ 3i 21482 54 4 213 138 4547 3524138 897 + 3521
GA_, 0 0 —1 -1 1 134 -3 61 6 — 10z
GB, 4 344 T+3i 18+7 43+ 18 1084437 274+ 108 696 + 274¢ 1771 + 6964
GB_, 4 —21 —2+9% 9-20 —-2-15: —15—2 31 —T744 —74 4 1084

Next, we describe the Binet’s formula for the Gaussian generalized Adrien numbers.
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The Binet's formula for the Gaussian generalized Adrien numbers is

(aGW3 — a(3 — @)GWa + (—a® + (3 — D)a + 1)GW; — GWo)a™

CWa = 402 +3a— 1
N (GBW3 — B(3 — B)GW2 + (=% + (3 — 1)3 + 1)GW; — GWy)B"
462 + 36— 1
L (O0GWs =13 = 1)GWa + (=9° + (3= 1)y + )GW1 = GWo)y”
3y—2
| GWs = 2GW, — GW1 = GWo
-3
i (aGW3 — a3 — a)GWa + (—a® + (3 — Da+ 1)GW;y — GWo)a™™*
402 4+ 3a—1
N (GBW3 — B(3 — B)GW2 + (=8> + (3 —1)B + 1)GW1 — GW) "t
482 +36 -1
L (OWs =98 =7)GW2 + (= + B = 1)y + 1)GWy — GWp)y"
492 + 3y —1
GW3 — 2GWy — GW; — GW,
+ — ).

Proof. The proof follows from (2.1) and (3.3). O

The previous Theorem gives the following results.

Corollary 3.1. For all integers n, we have following identities,

202 +a+1)a"  (28°+B8+1)" (P +y+1)" 1

An = -3
(@) & 10 13a—1 | 4P138-1 T 4y 13y-1 3"
Z((2a2+a+1)an71 (2ﬁ2+5+1)ﬂn71 (2’724’74’1)7”71 3 1)
402 +3a—1 482 +38 -1 492 4+ 3y -1 37

(b) GBo=a"+ 8"+ +1+i(a" '+ 8" +4" 7 +1).

The next Theorem presents the generating function of Gaussian generalized Adrien numbers.

18

Theorem 3.2. Let faw, (z) = GW,z" donate the generating function of Gaussian generalized Adrien numbers

n=0

is given as follows:

few, (2) > GWa"
n=0

 GWo + (GWy — 3GWo)x + (GW2 — 3GW1 + GWy)z? + (GW3 — 3GWa + GWh)z? (3.7)
- 1—3z+ a2+ 24 B

Proof. Using the definition of Gaussian Adrien numbers, and substracting = f(z), = f(z) and z® f(z) from f(z)
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we obtain (1 + 2% — 32% + 2*) fow,, (x)

(1-3z+ z2 4+ :r4)fgwn (z) = i GW,x" — 3x i GW,z" + 22 i GW,z" + z* i GWpx™,
n=0 n=0 n=0 n=0
= i GWya" —3 i GWya" ™ + i GW,z" ™ + i GWa" ™,
n=0 n=0 n=0 n=0

= Z GWyz" — 3 Z GW(n_l)SL‘n + Z GW(n_Q)wn + Z GW(n_4)In,

n=0 n=1 n=2 n=4
= (GWO + GWix + GWQZ‘Z + GW3CL‘3) — S(GW()I + GW1$L‘2 + Gngs)
+3(GWoz® + GW1z®) + Y (GWy — BGWi1 + GWoz + GWo_a)z",

n=4

= GWo+ (GW1 — 3GWo)x + (GW2 — 3GW1 4 3GW,)a?
+(GWs3 — 3GWa + GWh)z®.

and modifying above equation, we get (3.2). O

Corollary 3.3. For all integers n, we have following identities:

i+ x
x4+ 223 4322 -7z +1’

@) foa,(z) = i GAz" =

& 2z + (2 —9i) 2 — (9 —4i)z +4
= Bn n =
(b) fo,(z) = 3 GBnz 2% +22° + 322 — Tz + 1

Theorem (3.2) gives the following results as special cases,

(1-3z+2>+ 2" foa, () = GAo+ (GA1 —3G Az + (GAz — 3G A1 +3GA0)z? + (GA3z — 3G Ax + GAy )2®
=iz +x, (1 — 3z + 2% + %),

faB, () = GBo 4+ (GB1 — 3GBo)x + (GB2 — 3GB; + GBy)xz? 4+ (GB3 — 3GB2 + GBy)x®

=23 + (2 - 9i) 2 — (9 — 4i) z + 4.

Lemma 3.4. Suppose that fow, () = >, GWn% is the exponential Gaussian generating function of the
n=0

generalized Adrien sequence {GW,}.

Then i GW,.Z¢ is given by
n=0

n!
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= " (aWs—a(3—a)Wa+ (—a® + (3 — Da+ 1)W1 — Wo) s
;GW"H - d0? +3a—1 ¢
(BW3 — B3 — B)Wa + (=87 + (3—1)8+ 1)W1 — Wy) e
462 +35 -1
LOWs =B =y)Wat (=7 + B = Dy + W1 = Wo) e
492 +3v -1
+(W3 — 2W2_-3 W1 - WO)EI.
i (aWs — a3 —a)Wa 4+ (—a* + (3= Da+ 1)W1 — W) as
! a(4a? +3a—1) c
(BWs — B(3 = B)Wa + (= + 3= 1)B+ W1 — Wo) .
B4B2 +38-1)
(W3 =B =Wz + (=7" + (3 = 1)y + YW1 — Wh) e
Y(4y% 43y = 1)
Ws —2Wy — Wy — WO)ez)

+( —
Proof. The proof follows from the Binet’s formula of GW,, and GW,, = W,, + iW,_1 Lemma(2.4)

Z ZW T iWn1) 2 ZW +21Wn1

n=0
(aWs —a(3—a)Wa+ (—a*+ (3 - 1)a + 1)W; — GWO)e‘”
40?2 +3a—1

L (GWs — BB = f)Wa + (=8°+(B-1B+ 1)W1 — Wo) gz
421361

L OWs =B =)Wat (=" + B = D)y + YW1 = Wo) 10
4v2 + 3y -1

(W2 :3W1 SIELLCIY

i (aWs —a(3 —a)We + (—a® + (3 — Da+ 1)W; — Wo)e‘”

a(do? +3a—1)
WO) ﬁm

(BWs = B(B—B)Wa+ (=B + (83— 1B+ 1HW
B(4p% +38 —1)

(YW3 — (8 = )Wa + (—7* + (3 — 1)y + )W,

— GWO)e’Yz n (Wg —2Wy — W,
-3

77

M Y(4y? +37-1)
The previous Lemma 3.4 gives the following results as particular examples.

Corollary 3.5. Exponential Gaussian generating function of Adrien and Adrien-Lucas numbers

(20 +a+1)a”  (267+B+1)8" | (29 +y+10"
A _ =
a) Z ;_30(( 1F13a—1 T a@isp-1 T apis -1 37T
i((ga +a+1)a"! N 28 +B8+1)"" 2y +y+1y 1»{
402 +3a —1 482 +38 -1 492 4+ 3y —1 37 n!”
2 2 2 Hy" 1
:(Mew (25 +’6+1)65”+ (27"t + Ly — ")+
402 +3a—1 482 + 38 -1 492 + 3y —1 3
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2l tatl) ap, @FFAYD g, P4 e L.y
a(da? +3a—1) B(48%2 4+ 38 —1) v(4y?2+3y-1) 3
b) Z Bn% — Z(an+ﬁn+7n+1+l(an—l+ﬁn—1+7n—1+1))% :eaz+eﬁz+€’Yz+ez+i(éeaz+%eﬁz+
n=0 . n=0 !
%e” +e%).

4 OBTAINING BINET FORMULA FROM GENERATING FUNCTION

We next find Binet formula generalized Gaussian Adrien number {GW,} by the use of generating function for
GW,,.

Theorem 4.1. (Binet formula of generalized Gaussian Adrien numbers)

qa” q2" a3y qad”
@ Bla-N@=0  B-aB-NE-0 -0 -Hr-9 G-a6-no-mn *
where

= GWoa® + (GW1 — 3GWo)a® + (GWa + GWi + GWo)a + (GW3 + GWa + GW1),

Q2 = GYI/Voﬁ3 + (GW1 — 3GW0)B2 + (GWQ + GWy + GWo)ﬂ + (GWg + GWso + GW1),

g3 = GWo"yS —+ (GW1 — 3GWO)’}/2 + (GWQ + GW, + GWQ)’)/ + (GWg + GWs + G’VV1)7

@ = GWod® + (GWi — 3GWy)d8* + (GWa + GW1 + GWo)é + (GWs + GWo + GW7).

Proof. Let

h(z) =1 -3z + 2 + z*.
Then for some «, 8, and § we write

hz) = (1 — ax)(1 = fa)(1 —yz)(1 - bx),

i.e.,
1-3z+2>=(1-ax)(1 - Bz)(1 —~z)(1 - dz), (4.2)
Hence 1, %, % and } are the roots of h(x). This gives a, 8, and é as the roots of
1 3 1 1
h(-)=1->4 5+ =0

This implies z* — 323 4+ z? 4+ u = 0. Now, by it follows that

- n _ GWo + (GW1 — 3GWo)z + (GW2 — 3GW1 + GWo)z? + (GWs — 3GW2 + GW1)z®
Z GWpa" = .
o (1—oax)(1—pz)(1—~x)(1—dx)

Then we write

GWo + (GW1 — 3GWo)x + (GWa2 — 3GW: + GWo)a? + (GWs — 3GWa + GWh)a?
(1 — aa)(1— fo)(1 — 2)(1 — 6a)
Bl BQ B,j B4

T O-an) ((-Bn) (-92) (-6
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So

GWo + (GW1 — 3GWo)x + (GW2 — 3GW1 + GVVo)m2 + (GW3 — 3GW> + GWl)xB
= Bi(1-8z)(1—~z)(1—06x)+ B2(1 — azx)(1l —vx)(1 — ox)
+B3(1 — az)(1 — Bz)(1 — éz) + B3(1 — az)(1 — Bz)(1 — yz).

If we consider z = L, we get GWy + (GW1 — 3GWo) < + (GW2 — 3GW1 + GWo) 25 + (GWs — 3GW2 + GW1) 5
=Bi(1-2)(1-2)(1-2).

This gives

o’ (GWo + (GW1 — 3GWo) £ + (GW2 — 3GW1 + GWo) 5 + (GWs — 6GWa + GW1) Z5)
(o= B)(a =) (o —6)
GW0a3 + (GW1 — GW())Oé2 + (GWQ — 3GW, + GWo)Oé + (GW3 — 3GWo + GWl)
(o= B)(a = ) (= 6) '

B, =

Similarly, we obtain

G’I/Voﬁ3 + (GW1 — SGW())ﬂQ + (GWQ — 3GW, + GWo)ﬁ + (GWg — 3GWo + GWl)

e = (B =) - —9) ’

By — GWoy® + (GW1 — 3GWo)y? + (GWa2 — 3GW1 4+ GWo )y + (GW3 — 3GWo 4+ GWh)
(v —a)(y = B)(y =) ’

B, — GWu6% + (GW1 — 3GW5)62% + (GWa — 3GW, + GW5)8 4+ (GWs — 3GWa + GWl)_

(0 —a)(6=B)(6—7)

Thus (4.3)can be written as

> GWna" = Bi(1 — az) ' + Ba(1 - Bz) ' + Bs(1 — y2) ' + Ba(1 - dz) .

This gives

o]

i GWpa" = B; i a"z" + Ba i B"z" + B3 i ~y'x" + By Z stz
n=0 n=0 n=0 n=0 n=0

= Z(Blan +4 Bzﬂn +4 B3’yn + B45n)$n

n=0

Therefore, comparing coefficients on both sides of the above equality, we obtain

GW = Bia" + Bzﬁn + Bg’yn + B4o".
and then we get (4.1). O

5 SOME IDENTITIES ABOUT RECURRENCE RELATIONS OF GAUSSIAN
GENERALIZED ADRIEN NUMBERS

In this section, we present some identities on Gaussian Adrien, Gaussian Adrien-Lucas.
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Theorem 5.1. The following equations hold for all integer n

34 50 22 49
GAn — ﬁGBn+3 - ﬁGBnJrZ - ﬁGBnJrl - THGB’”, (51)
GBn = —GAnys+3GAnss+ GAnsr —4GA,.

Proof. To proof identity (5.1), we can write

GA, = aGBn+3 =+ bGBn+2 + CGBn+1 + dGB,,.

Solving the system of equations

GAy = aGBs3z+bGBy + cGB1 + dGBo,
GA1 = aGB4+bGBs3 4+ cGBy + dGBl,
GAy, = aGB5 + bG By + CGB3 =+ dGBQ,
GAs = aGBg+ bGBs + c¢GBy + dGBs.
wegeta= 2t b=—22 c=—22 d=—22 The other identities can be found similarly. O

Lemma 5.2. (Froniczak, 2018) Let’s assume that f(z) = i anx™ is the generating function of the sequence
n=0

{an}n>0. Then the generating functions of the sequences {a;n}nzo and {azn+1}n>0 are stated as

fog () = 3 agna” = f(\/f)+2f(*\/5)_

n=0

and

J/B) = J(-VE)

(@)
fa2n+1 ('T) = §a2n+1m" = 2\/5

respectively.

The generating functions of the even and odd-indexed Gaussian generalized Adrien sequences are provided by
the following theorem.

Theorem 5.3. The generating functions of the sequence GWo,, and GWo,,+1 are provided by

2 (GWs — 3GW1 + GWy) + 22 (3GW3 — 8GW> + 2GWo) + 2(GWa — TGW,) + GWo

= .2
faw,, (z) 24+ 203 + 322 —Tr + 1 ’ (5.2)

F (@) = 23(GW3 — 3GWs + GW1) + 22 (GW3 — 3GWa + 2GW1 — 3GWo) + 2 (GW3 — TGW,) + GWh
CWant1 1) = x4 4223 + 322 —Tx + 1 )

(5.3)
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Proof. We only proof (5.2). From Theorem (3.2) we can obtain following identities:

(GWa2 — 3GW1 4+ GWo)Va? 4 (3GW3 — 8GWa + 2GWo) Va2 + (GWo — TGWo) /z + GWy

faw, (Vo) = 224 2Va3 + 3z — Tz + 1
few (—/T) = (GW3 — 3GWs + GW1)Va3 + (GW3 — 3GWa + 2GW, — 3GWo) Va2 4+ (GWs + TGW1) Vo — GW4
W\l — = — .

22+ 2Vxd +3x —Ty/r+ 1

Thus, the result follows from Lemma (5.2) can be proved . The other identity can be found similarly. O
From Theorem (5.3), we get the following Corollary.

Corollary 5.4.

ir® +ix® + (3 +i)x
x4 4223 + 322 — Tx + 1’
2+ (1+3)x+1
x4+ 223 + 322 —Tx + 1’
(2—9i) 2 + (6 —3i)x® — (21 — 3i)z + 4

fapan(z) = 4+ 223 4322 -7+ 1 ’

fcas,(z) =

fGA2n+1 (CC) =

F @) = 2ix® — (9 — 6i) 2® — (3 + 214) x + (3 + 44)
GBan41\F) = ot 223 322 — Tx + 1 '

From Corollary (5.4) we can obtain the following corollary which presents the identities on Gaussian Adrien
sequences.

Corollary 5.5. (a) (3 + i)Ganfz + 1GBop—_4 +1GBop_g = 4G Ao, — (21 — 3i)GA2n72
—|—(6 — 3i)GA2n_4 + (2 — 9i)GA2n_6,

(b) GB2n + (14 3i) GBan—2 + GBapn—a = 4GA2n+1 — (21 — 3i)GAzn—1 + (6 — 31)GA2n—3
+(2 — 9’1:)GA2n75,

(C) (3 + 4i)GBQn — (3 + 21i)GBQn_2 — (9 — 6i)GBQn_4 + (Qi)GBQn_G = 4GBQn+1 — (21 — 3i)Gan_1
+(6 — 3i)GBQn_3 =+ (2 — E)Z')GBQTL_s7

d) Gan+1 + (1 + 3i)GB2n71 + GBop_3 = (3 + 4i)GA2n+1 — (3 + 217:)GA2"71 — (9 — Gi)GAang
+(21)GAzn s,

(e) (3 -+ i)GBQn_l + iGBap—3 +1GBay_5 = (3 + 4i)GA2n — (3 + 21i)GA2n_2 — (9 — Gi)GAQn_4
+(2i)GA2n76,

(f) GAzp + (1 +3i)GAzn—2+ GAsp—u = (34+1)GAspn_1 +iGA2,—3 +iGAzn_5.
Proof. From Corollary (5.4) we obtain

(iz® +iz® + (34 i) ) faa,, (z) = ((2 — 9i) 2 + (6 — 3i) 2® — (21 — 3i)z + 4) faB,, ().
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The LHS (left hand side) is equal to

LHS

iz + x> + (3+1) ZGBgna: ,

B+i)x i GBana" + iz? Z GBanz" + iz® i GBa,z",

n=0 n=0

= (3+14) i Bonz" 44 Z GBonz" 24 Z GBana™?,
n=0 n=0 n=0

= 3 + Z i an_zl'n + 7 Z GBQn_4.'En + 7 Z GBQn_sl’n,
n=1 n=2 n=3

(12 + i)z + (18 4+ 20i)z” + > " ((3+14) GBan—2 + iGBan—4 + iGBan—c)z"

n=3
whereas the RHS (right hand side) is equal to
RHS = ((2—9i)a°+ (6 —3i)2” — (21 = 3i)x +4) Y  GAzna"
n=0
= 4) GAsa" — (21 =3i)z Yy GAspz" + (6 —3i) 2 Y  GAzuz” + (2 - 9i)2° > GAzna”
n=0 n=0 n=0
)oo oo
= 4 Z GAznz™ — (21 — 3d) Z GAopz™™ + (6= 3i) > GAna™™? +(2-9i) > GAgpa™*?
n=0 n=0 n=0
= 4 Z GAzpa™ — (21 = 3i) 3 " GAzp 22" + (6 — 31) > GAsnaz” + (2—9i) Y GAzp 2"
= n=1 n=2 n=3

(12 + 4i)z + (18 4+ 200)2° + > (4G A2y — (21 — 3))GAzn—2 + (6 — 3))G Az s + (2 — 9i)GAzn_6)a"
n=3
Comparing the coefficients and the proof of the first identity (a) is done. We can show other identity similarly. O

We can get an identitiy related to Gaussian Genaralized Adrien numbers given below.

Theorem 5.6. For all integers m, n the following identities hold:

GWm+n - Am72GWn+3 + (7Amf3 - Am75)GWn+2 + (7Am74)GWn+l - A'mf3GWn-

Proof. First we assume that m,n > 0 then (5.6) can be proved by mathematical induction on m. If m = 0 we get

GWTL = A72GW7L+3 + (—A,g - A75)GW7L+2 + (_A74)GW7L+1 - A*SGWN'

which is true since A_o = 0, A_3 = —1, A_4 = 0, A_s = 1. Assume that the equality holds for m < k. For
m=k+ 1, we get
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GWit14n = 3GWiir — GWigk—1 — GWagk—s,

=83Ar—2GWhpis + (—Ak—3 — Ap—5)GWhpio

+3(Ar—0)GWrsr — A_sGW,,

“(Ap—3GWhis + (—Ak—1 — Ap—6)GWhia + (—A_5)GWii1 — Ap—aGWy)
Ak—5GWhnis + (—Ak—6 — Ap—8)GWhio + (—Ar—6)GWat1 — Ag—6GWh.

Consequently, by mathematical induction on m, this proves Theorem (5.6).
The other cases of m, n can be proved smilarly for all integers m,n. O

Taking GW,, = GA,, or GW,, = GB,, in above Theorem, respectively, we get:

Corollary 5.7.
GAm+n = Am—QGAn+3 + (_Am—B - Am—S)GAn+2 + (_Am—4)GAn+1 - Am—3GAn7
GBm+n = Am—2GBn+3 + (_Am—B - Am—5)GBn+2 + (_Am—4)GKn+l - Am—SGBn-

6 SIMSON’S FORMULA

In this section, we present Simson’s formula of generalized Gaussian Adrien numbers. This is a special case of
[(Soykan, 2019c),Theorem 4.1].

Theorem 6.1. For all integers n, we can write the following equality:

GWnyz GWige GWippn  GW, GWs GW2  GWh GWo
GWnya GWyppn  GW,  GWiq | | GW2  GW; GWo GW_1
GWypp1  GW, GWhi GW,_o | | GW1  GWo GW_1 GW_,

GWn  GWnpoy GWi_o GWy_3 GWo GW_1 GW_y GW_3

= (GWo + GW1 + 2GWo — GW3)(—GW3 + 5GW3 + GW? 4+ GWE — (GWy + 3GW:1 — TGW2)GW3
+(3GWo — 4GW; — 14GW3)GW3 4 (2GWo + GWa — 6GW3)GWE — (GW; + 2GW3)GW§
+13GW1GWoGW3 + GWoGWoGW3 + 5GWoGW1GW3 — 7GWOGW1GW2).

Proof. Using Theorem (3) it can be proved by using induction use [(Soykan, 2019c),Theorem 4.1] From the
Theorem (6.1) we get the following Corollary.

Corollary 6.2. For all integers n, the Simson’s formulas of Adrien and Adrien Lucas numbers are given as
respectively.

GAnis GAnys GAnp:  GA,
GAnt2 GAnp1r GA, GAna | o
@ | Ga  GA GAwy GA,, | TP
GA, GA,.1 GA,_ > GA,_3
GBny3 GBny2 GBpya GB,
GBunyz GBnsi  GBn  GBay | .
®) | Gt TG GBl L o | = T3 23000
GB, GB,-1 GSB,_>» GB,_3
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7 SUM FORMULAS

In this section, we identify some sum formulas of generalized Gaussian Adrien numbers.

Theorem 7.1. For all integers n > 0, we get sum formulas below:

@ >r_ o GWi = 3(—(n+3)GWnis + (2n+7)GWyyo + (n + 2)GWoy1 + (n+ 4)GW,
+3GWs — TGWa — 2GW1 — GWo).

(b) Yh_ o GWar = 5(—(n+2)GWani2 + (2n + 5)GWant1 + (n + 3)GWap + (n + 2)GWapn 1
+2GW3 — AGW> — 3GWh).

(©) >r_oGWari1 = 3(—(n+ 1)GWany2 + (20 + 5)GWani1 + (n + 2)GWay, + (n + 2)GWay, 1
L2GW; — 5GWa — 2GWh).

Proof. It can be proved by using Theorem 3.10 in Soykan (Soykan, 2025). O

As a special case of the Theorem 7.1, we present following Corollary.

Corollary 7.2. For all integers n > 0, we get sum formulas below:

@ > GAr=3i(—(n+3)GAnys + (2n+ 7)GAni2 + (n+2)GAni1 + (n+4)GAn + 1 + 2i).
(b) Yo GAgk = 3(—(n+2)GAzni2 + (2n 4 5)GAzni1 + (n 4 3)GAzn + (n + 2)G Az 1 + 1 + 20).
(c) ZZ:O GAsiy1 = %(—(n 4+ 1)GAznt2 + (2n 4+ 5)GAzpn+1 + (n 4+ 2)GAzp + (n+ 2)GA2p—1 + 1 +19).

As a special case of the Theorem 7.1, we present following Corollary.

Corollary 7.3. For all integers n > 0, we get sum formulas below:

(@ >p_oGBr=3(—(n+3)GBnys + (2n+ 7)GBny2 + (n + 2)GBni1 + (n+4)GB, — 5 — 8i).
(b) Y7o GBak = :(—(n+2)GBanta + (2n + 5)GBant1 + (n + 3)GBan + (n + 2)GBan—1 — 1 — 10i.
(€) > r_oGBaks1 = 5(—(n+1)GBany2 + (2n + 5)GBany1 + (n + 2)GBan + (n+ 2)GBan—1 — 7 — i).

Next, we give the ordinary generating functions of some special cases of Gaussian generalized Adrien numbers.
Theorem 7.4. The ordinary generating functions of the sequences Wa,,, Wa,,41 are given as follows:
(323)GWs3 + (2® — 822 + 2)GWa + (—=323)GWy + (23 + 222 — T2 4+ 1)GW)

x* 4+ 223 4+ 322 —Tr + 1 '

(2 4+ 2% + 2)GW3 — (3% + 322)GWa + (2 + 222 — T 4+ 1)GW; + (=323)GWo
2t 4223 + 322 —Tx + 1 '

@) S GWana" =

(b) ZZO:O GW2n+1CEn =

From the last Theorem, we have the following Corollary which gives sum formula of Gaussian Adrien numbers
(Take W, = GA, whit GAy = 0,GA; =1, GAs =3+ 7, GAsz =8+ 32)

Corollary 7.5. Forn > 0 Gaussian Adrien numbers have the following properties:
iz® +ix® + (3 +i)z
x4+ 223 4+ 322 —7x +1°

22+ (1+3)z+1
xt 4223 +322 —7x+1°

(@ > 2, GAxa" =

(b) ZZO:O GA2n+11‘n =
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From the last Theorem, we have the following Corollary which gives sum formula of Gaussian Adrien-Lucas
numbers (Take W,, = Gb,, whit GBy = 4,GB1 =3+ 4i,GBy = 7 + 3i,GB3 = 18 4 Ti.)

Corollary 7.6. Forn > 0 Gaussian Adrien-Lucas numbers have the following properties:
(2—9) 2% + (6 —3i)x® — (21 — 3i)z + 4
x4 4+ 223 + 322 — T + 1 ’

- 2ix® — (9 — 6i) 2% — (34 2143) = + 3+ 44
Bopjiz" == .
(B) Xm0 GBzniaz xt + 223 4322 — Tz + 1

(@ > GBapa" =

8 MATRIX FORMULATION OF GW,,
In this section, we review the matrix representation of generalized Gaussian Adrien numbers.

We define the square matrix M of order 4 as

OO = W
o = o
= o O O
o O O

such that detM = 1. Note that

An+1 _An - An72 _Anfl _An
An _An—l - A'n—S _An—Q _An—l

An—l 7An—2 - An—4 7An—3 7An—2

An72 _An73 - An75 _An74 _An73

M" =

for the proof see (Soykan, 2021e).

Then we give the following lemma.

Lemma 8.1. Forn > 0 the following identitiy is true:

GW7L+3 3 -1 O —1 " GW3
GWais | [ 1 0 0 o0 GW,
GWnsr |7l 0 1 0 0 GW,

GW, 0 0 1 0 GWy

Proof. The identitiy(8.1) can be proved by mathematical induction on n. If n = 0 we obtain

GW3 3 -1 0 -1 GW3
aw. | [ 1 0 o0 o0 GWo
Gwy | 0 1 0 O Gw, |’
GWy 0 0 1 0 GWo
which is true. We assume that the identity given holds for n = k. Thus the following identitiy is true

k

GWis 3 -1 0 -1 GWs
GWia | [ 1 0 0 o0 GWa
GWisa | 0 1 0 o0 GW,

GWy 0 0 1 0 GWo
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Forn =k + 1, we get

3 -1 0 -1\ / aws 3 -1 0 -1 3 -1 0 —1\"/ aws
1 0 0 0 GWa B 1 0 0 0 1 0 0 0 GWo
0 1 0 0 GW: - 0 1 0 0 0 1 0 0 GW;
0 0 1 0 GW, 0 0 1 0 0 0 1 0 GW,
3 -1 0 -1 GWiys
_ 1 0O 0 O GWiya
= 0 1 0 0 GWiit
0 0 1 0 GW,
GWiya
_ GWiqs
- GWiya
GWiy1

Consequently, by mathematical induction on n, the proof completed. [

We define

GWs GW, GW, GW,
N GWs GWi GW, GW_; 8.1)
Guw = GW1 GW, GW_. GW_, |’ :

GWoy GW_1 GW_o GW_3

GWnys GWipyo GWpgpr GW,
B - GWnya  GWnia GWn,  GWna (8.2)
Gw o GWn+1 GWn GWn—l GWn—Q ' ’

GW, GWpo1o GWp2 GWp_3

Now, we have the following theorem with N¢., and Eg.,

Theorem 8.2. Using Ng., and Eg., , we get

A"Ngw = Eguw.
Proof. Note that we get
Apta —Ap — An_o —An_1 —An GWs  GWas GWh GWo
AN, . An  —Apn1—Ans —An_o —An GWy, GWy GWy GW_,
G - An—l _An—Q - An—4 _An—S _An—Q GWI GWO GW—l GW—Q
Ano —An3—Ans —Anya —An_s GWo GW_1 GW_o GW_3

ail a1z a3 a4
a1 Q22 A23 QA24
a31 a32 a3z a34
a41 Q42 Q43 Q44
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where
ain = An1GWis+ (—Ap — An2)GWa + (—An—1)GW1 + (—A,)GWo,
a2 = An1GWa+ (—An — An2)GWy + (—An—1)GWo + (—An)GW_1,
@13 = Ans1iGWi A+ (—An — An_2)GWo + (—An_1)GW_1 + (—A2)GW_o,
an = Aps1GWo + (—Ap — Ap—2)GWor + (—Ap_1)GW_s + (— An)GW_s,
az1 = A,GWs+ (—A An_3)GWa + (—An—2)GW1 + (—An—1)GWy,
a2 = AnGWa+ (—Ap_1 — An_3)GW1 + (= An_2)GWo + (—An_)GW_1,
423 = AnGWi 4 (—Ap_1 — An3)GWo + (—Ap_2)GW_1 + (= Ap_1)GW-_a,
aza = A GWo+ (—An—1— An_3)GW_1 + (—An_Q)GW_Q + (—An_1)GW_s,
azi = An1GWi+ (—An—2— An_a)GWa + (—An_3)GW1 + (—An—2)GWy,
azz = An1GWa+ (—An—2— Ap_s)GW1 + (—An_3)GWo + (—An—2)GW_q,
a33 = Apn_1GWi+ (—An—2 — An—a)GWo + (—An—3)GW_1 + (—Apn_2)GW_3,
a3a = Ap1GWo+ (—An—2 — An—a)GW_1 + (—An—3)GW_g + (—An_2)GW_3,
ayn = An_oGWi+ (—An_3 — Apn_5)GWa + (—Apn_4)GW1 + (—An_3)GWp,
as2 = An2GWa+ (—An—3 — An—s5)GW1 + (=An—a)GWo + (—An—3)GW_1,
415 =  An_sGWi + (—An_s — An_5)GWo + (—An_2)GW_1 + (—An_3)GW_s,
a1 = An_sGWo+ (—An_s — An_5)GW_1 + (—=An_2)GW_3 + (—An_3)GW_3.

Using the Theorem 5.6 the proof is done. O

By taking GW,, =G A,, with GAp, GA1,GA2,GAs in (8.1) and (8.2)
nd (8.2)

GW,, =GB, with GBo, GB1,GB>,GBs in (8.1) a

respectively, we get:

8+3i 3+i 1 0 GApys GAnys GAnpn GAg
N _ 3+ 1 0 0 E _ GAny2 GAnia GA, GA,_1
G4 1 o o0 o |79 GAny1  GA,  GAn_i GAn_s |
0 0 0 0 GA, GAn_1 GAn_o GA,_s
18+71 7+3t 3+4 4 GBpy3s GBpy2 GBpia G By
N _ T+3i 3+4i 4 4i g _ | GBuxz GBupx  GB.  GB,o
@B 3+4i 4 4i -2 » HGB GBny1  GB, GB,_.1 GBn s
4 —4i -2 9-2 GB, GBn.1 GB,_2 GB,_s

From Theorem [8.2], we can write the following corollary.

Corollary 8.3. The following identities are hold:

(@) A"Nga = Ega.
(b) A"Ngp = EgB.

9 CONCLUSIONS

Recurrence relations have been widely studied in the
literature owing to their versatility and applicability

across various fields, including physics, engineering,
architecture, the natural sciences, and the arts. Among
these, sequences defined by second-order recurrence
relations—such as the Fibonacci, Lucas, Pell, and
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Jacobsthal sequences—hold a particularly prominent
place. The Fibonacci sequence, for instance, achieved
historical significance through its application to the
rabbit population model presented by Leonardo de
Pisa in his 1202 work Liber Abaci. Both Fibonacci
and Lucas sequences have inspired extensive research
due to their elegant structural properties and numerous
remarkable identities.

In this study, we introduce a class of fourth-order
recurrence relations termed the Gaussian Generalized
Adrien numbers, along with two notable special
cases. We derive various structural properties
of these sequences, including Binet-type formulas,
ordinary and exponential generating functions, Simson-
type identities, summation formulas, recurrence
characteristics, and matrix representations.

Linear recurrence relations constitute powerful tools in
both theoretical analysis and applied mathematics.

In the following lists, we explore illustrative applications
of such relations, beginning with those governed by
second-order structures.

» For the applications of Gaussian Fibonacci and
Gaussian Lucas numbers to Pauli Fibonacci and
Pauli Lucas quaternions, see (Azak, 2022).

» For the application of Pell Numbers to the
solutions of three-dimensional difference
equation systems, see (Blylk and Tagkira,
2022).

» For the application of Jacobsthal numbers to
special matrices, see (Vasanthi and Sivakumar,
2022).

» For the application of generalized k-order
Fibonacci numbers to hybrid quaternions, see
(Gul, 2022).

» For the applications of Fibonacci and Lucas
numbers to Split Complex Bi-Periodic numbers,
see (Yilmaz, 2022b).

» For the applications of generalized bivariate
Fibonacci and Lucas polynomials to matrix
polynomials, see (Yilmaz, 2022a).

» For the applications of generalized Fibonacci
numbers to binomial sums, see (Ulutas and Toy,
2022).

» For the application of generalized Jacobsthal
numbers to hyperbolic numbers, see (Soykan
and Tasdemir, 2022).

» For the application of generalized Fibonacci
numbers to dual hyperbolic numbers, see
(Soykan, 2021d).

» For the application of Laplace transform and
various matrix operations to the characteristic
polynomial of the Fibonacci numbers, see
(Deveci and Shannon, 2022).

» For the application of Generalized Fibonacci
Matrices to Cryptography, see (Prasad and
Mahato, 2022).

» For the application of higher order Jacobsthal
numbers to quaternions, see (Ozkan and Uysal,
2023).

» For the application of Fibonacci and Lucas
Identities to Toeplitz-Hessenberg matrices, see
(Goy and Shattuck, 2019).

» For the applications of Fibonacci numbers to
lacunary statistical convergence, see (Bilgin,
2021).

» For the applications of Fibonacci numbers to
lacunary statistical convergence in intuitionistic
fuzzy normed linear spaces, see (Kisi and
Tuzcuoglu, 2020).

» For the applications of Fibonacci numbers to
ideal convergence on intuitionistic fuzzy normed
linear spaces, see (Kisi and Debnathb, 2022).

+ For the applications of k-Fibonacci and k—Lucas
numbers to spinors, see (Kumari et al., 2023).

 For the application of dual-generalized complex
Fibonacci and Lucas numbers to Quaternions,
see (Sentlrk et al., 2022).

» For the application of special cases of Horadam
numbers to Neutrosophic analysis see (Gokbas
et al., 2023).

» For the application of Hyperbolic Fibonacci
numbers to Quaternions, see (Dasdemir, 2021).

We now present some applications of third order
sequences.

» For the applications of third order Jacobsthal
numbers and Tribonacci numbers to quaternions,
see (Cerda-Morales, 2017a) and (Cerda-
Morales, 2017b), respectively.

» For the application of Tribonacci numbers to
special matrices, see [(Yilmaz and Taskara,
2014).
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For the applications of Padovan numbers and
Tribonacci numbers to coding theory, see
(Shtayat and Al-Kateeb, 2019) and (Basu and
Das, 2014), respectively.

.

For the application of Pell-Padovan numbers to
groups, see (Deveci and Shannon, 2017).

» For the application of adjusted Jacobsthal-
Padovan numbers to the exact solutions of some
difference equations, see (Gdécen, 2022).

» For the application of Gaussian Tribonacci
numbers to various graphs, see (Sunitha and
Sheriba, 2022).

» For the application of third-order Jacobsthal
numbers to hyperbolic numbers, see (Dikmen
and Altinsoy, 2022).For the application of
Narayan numbers to finite groups see (Kuloglu
et al., 2022).

For the application of generalized third-order
Jacobsthal sequence to binomial transform, see
(Soykan et al., 2022a).

For the application of generalized Generalized
Padovan numbers to Binomial Transform, see
(Soykan et al., 2022b).

For the application of generalized Tribonacci
numbers to Gaussian numbers, see (Soykan
etal.,, 2018).

For the application of generalized Tribonacci
numbers to Sedenions, see (Soykan et al,
2020a).

For the application of Tribonacci and Tribonacci-
Lucas numbers to matrices, see (Soykan,
2020a).

For the application of generalized Tribonacci
numbers to circulant matrix, see (Soykan,
2021Db).

For the application of Tribonacci and Tribonacci-
Lucas numbers to hybrinomials, see (Tasyurdu
and Polat, 2021).

For the application of hyperbolic Leonardo and
hyperbolic Francois numbers to quaternions, see
(Diskaya et al., 2023).

.

Next, we now list some applications of fourth order
sequences.

« For the application of Tetranacci and Tetranacci-
Lucas numbers to quaternions, see (Soykan,
2019d).

» For the application of generalized Tetranacci
numbers to Gaussian numbers, see (Soykan,
2019a).

« For the application of Tetranacci and Tetranacci-
Lucas numbers to matrices, see (Soykan,
2019b).

» For the application of generalized Tetranacci
numbers to binomial transform, see (Soykan,
2021c).

We now present some applications of fifth order
sequences.

» For the application of Pentanacci numbers to
matrices, see (Sivakumar and James).

» For the application of generalized Pentanacci
numbers to quaternions, see (Soykan et al.,
2020b).

» For the application of generalized Pentanacci
numbers to binomial transform, see (Soykan,
2021a).
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