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ABSTRACT 
 

Aims: As a global leader in soybean production, Brazil faces intensifying environmental challenges 
driven by conventional agricultural practices. This underscores the need for sustainable 
intensification strategies. 
Study Design: This study employed Life Cycle Assessment (LCA) to compare the environmental 
performance of soybean cultivation under precision agriculture (PA)-based fertility management 
with conventional systems. 
Place and Duration of Study: Conducted in Mato Grosso do Sul over a five-year period (2019–
2023). 
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Methodology: The analysis used a cradle-to-farm gate approach, with 1 kg of soybean grain as 
the functional unit. Primary data were collected from a commercial farm utilizing PA, while 
benchmark data from Embrapa represented the conventional system. Environmental impacts were 
assessed in four categories: global warming potential (GWP), acidification potential (AP), 
eutrophication potential (EP), and human toxicity potential (HTP). Monte Carlo simulations and 
sensitivity analyses ensured result robustness. 
Results: PA significantly reduced environmental impacts: −60.84% (EP), −31.79% (AP), −28.65% 
(GWP), and −19.54% (HTP). The planting and fertilization stages were the primary contributors to 
overall impacts. 
Conclusion: The findings highlight PA as a promising strategy for sustainable intensification, 
improving environmental outcomes and resource efficiency. However, adoption remains limited due 
to high upfront costs and technical knowledge requirements. These insights reinforce the policy 
relevance of promoting PA through incentives, training, and infrastructure, and demonstrate its 
potential scalability across similar production systems. 
 

 
Keywords: Precision agriculture; life cycle assessment; sustainability; fertility management; soybean 

production. 
 

1. INTRODUCTION 
 
Soybean plays a pivotal role in meeting the rising 
global demand for food, especially with the world 
population projected to reach 9.7 billion by 2050 
(OECD/FAO, 2024). Reflecting this global 
significance, countries such as India are striving 
to enhance the technical and economic efficiency 
of their soybean production systems (Singh et 
al., 2024; Patel et al., 2023). In this global 
context, Brazil stands out as a leading producer, 
benefiting from favorable climatic conditions, 
abundant water resources, and extensive arable 
land, factors that position it as a key contributor 
to global food security (Sader & Engelke, 2024). 
In 2024, Brazil alone produced approximately 
168 million metric tons of soybeans across more 
than 47 million hectares in diverse biomes, 
including the Pampa, Atlantic Forest, Cerrado, 
and Amazon (CONAB, 2025). 
 
Although deforestation linked to agricultural 
expansion has declined in key biomes, due to a 
combination of regulatory policies and private 
sector commitments (INPE, 2023), pressure on 
natural ecosystems remains high, underscoring 
the urgent need for sustainable intensification. 
 
Among the strategies gaining prominence, 
Precision Agriculture (PA) has emerged as a 
promising approach to enhance resource use 
efficiency and reduce the environmental footprint 
of crop production. Studies across                        
various agricultural systems consistently show 
that PA technologies can significantly reduce 
greenhouse gas emissions, acidification, and 
eutrophication potentials, while optimizing 
resource use (Jensen et al., 2012;                     

Gasso et al., 2014; Balafoutis et al., 2017; 
Hedayati et al., 2019). These environmental 
benefits, along with productivity and labor 
efficiency gains, highlight PA’s relevance for 
sustainable intensification, particularly in large-
scale soybean production systems (Bottega et 
al., 2017; Topa et al., 2025). 

 
Despite its potential, the adoption of Precision 
Agriculture (PA) in Brazil remains limited. A 
recent study by McKinsey & Company (2024) 
revealed that only 50–55% of producers currently 
use PA techniques, and merely 40–45% possess 
the necessary equipment. Similar limitations, 
particularly in cost-efficiency, input management, 
and yield optimization, have been documented in 
other emerging economies, such as India, where 
studies have analyzed the resource use and 
economic viability of soybean production 
systems (Singh et al., 2024; Patel et al., 2023). 
These findings underscore a significant gap 
between the availability of PA technologies and 
their practical implementation on farms (Molin, 
2017). Key barriers include high upfront 
investment costs, the requirement for specialized 
technical expertise, and a limited perception of 
measurable environmental benefits (Pereira & 
Braga, 2018; Kang et al., 2019; Inácio et al., 
2021). This study aims to help bridge this gap by 
providing robust, quantitative evidence of PA’s 
environmental advantages, thereby supporting 
broader adoption and informing policy initiatives 
(Fartek et al., 2016; Kumar et al., 2018). 
 
Similar adoption barriers exist globally, often 
stemming from limited awareness of PA's 
environmental and economic benefits, along with 
restricted access to financing and technical 
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training (Gonzales-Gemio & Sanz-Martín, 2025; 
Pereira & Braga, 2018). 
 

PA enables site-specific crop management by 
integrating tools such as GPS, sensors, software, 
and variable-rate applicators (Kumar et al., 2018; 
Lima et al., 2019). These technologies facilitate 
more precise input use, especially for fertility 
management, which has been shown to reduce 
greenhouse gas emissions from agriculture by 
10–28% compared to conventional practices 
(Mgendi, 2024; Getahun et al., 2024; Petrovic & 
Csambalik, 2025). Beyond yield optimization, PA 
can deliver co-benefits such as enhanced labor 
efficiency, biodiversity conservation, and 
improved socioeconomic outcomes for 
smallholder farmers (FAO, 2017c; Makate et al., 
2019; Getahun et al., 2024; Xu et al., 2024). 
 

Assessing the environmental performance of 
such innovations requires comprehensive 
analytical tools. Life Cycle Assessment (LCA) is 
a robust methodology that quantifies 
environmental impacts across all stages of a 
product's life cycle, from resource extraction to 
the farm gate, enabling the identification of best 
practices for low-impact agricultural production 
(ISO 14040, 2006; Nemecek et al., 2015). 
 

This study addresses a critical knowledge gap by 
evaluating the environmental performance of PA-
based fertility management in soybean 

production. Using four key impact categories, 
global warming potential (GWP), acidification 
potential (AP), eutrophication potential (EP), and 
human toxicity potential (HTP), the study 
compares PA with conventional practices and 
examines the contribution of each operational 
stage. The findings aim to inform policy 
development and support sustainable 
intensification strategies at the farm level. 
 

2. MATERIALS AND METHODS 
 

This study assessed the environmental impacts 
of soybean production systems using either 
conventional practices or PA-based fertility 
management. A Life Cycle Impact Assessment 
(LCIA) was performed in accordance with ISO 
14040 and ISO 14044 standards. 
 

2.1 Study Area 
 

The analysis was conducted using data from a 
commercial farm located in Caarapó, Mato 
Grosso do Sul, Brazil (22°44′1.14″S, 
54°47′52.26″W) (Fig. 1). The farm operates 
under a no-tillage, rainfed soybean–maize 
rotation system across 218.02 hectares of Oxisol 
soil, with an average annual precipitation of 
1,547 mm. Precision Agriculture (PA) practices 
were implemented over a five-year period (2019–
2023), with technical support provided by Aggis 
Integrated Technologies. 

 

 
 

Fig. 1. Delimitation of the area destined to the cultivation of transgenic soybean using the 
precision system. Satellite image showing the boundaries of the field 

Source: courtesy of Agges Integrated solution Company (2024) 
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Fig. 2. Geo-referenced grid and spatial distribution of soil sampling points 
 
To operationalize the PA management approach, 
the farm was subdivided into two fields: T01 
(126.98 ha) and T02 (91.04 ha), where PA 
technologies were adopted in 2018 and 2019, 
respectively (Fig. 1). The PA system integrates 
auto-guidance technology, variable-rate fertilizer 
applicators, and soil sensors. Annual geo-
referenced soil sampling in 5-hectare grids, 
comprising 20 to 24 sampling points per field, 
supports site-specific recommendations for lime 
and nutrient application via specialized software 
tools. 
 

2.2 Precision Agriculture 
 
To evaluate fertility requirements and manage 
nutrient use over time, both fields were 
subdivided into geo-referenced 5-hectare grids, 
with 24 sampling points in T01 and 20 in T02 
(Fig. 2). 
 
Nutrient recommendations adhered to PA 
guidelines from key Brazilian institutions: the 
Precision Agriculture Laboratory (LAP) at the 
University of São Paulo (Colaço & Molin, 2015), 
EMBRAPA (Broch & Ranno, 2012), and the 
Ministry of Agriculture (MAPA, 2013). 
 
Soil fertility mapping influences both fertilizer 
rates and fuel consumption throughout 
production (Balafoutis et al., 2017; Getahun                  
et al., 2024; Mgendi, 2024; Vullaganti et al., 
2025). Thus, the environmental contribution                    
of each operational stage was included in the 
LCA. 
 

2.3 Conventional Practices 
 
The conventional system was based on data 
from an EMBRAPA study conducted in Mato 
Grosso do Sul between 2016 and 2020. This 
dataset, which does not incorporate PA 
technologies, reports an average soybean yield 
of 3,000 kg ha⁻¹ and includes input data for 
seeds, mineral fertilizers, and pesticides. To 
enable a fair comparison, the life cycle inventory 
was adjusted to ensure system equivalence in 
the comparative analysis. 
 

2.4 Scope 
 

The system boundaries (Fig. 3) were defined 
from cradle to farm gate, encompassing indirect 
emissions associated with farm inputs, including 
fertilizers, pesticides, seeds, machinery, fuel, and 
infrastructure. Grain drying was excluded from 
the analysis. The functional unit (FU) was 
defined as 1 kilogram of soybean grain with 13% 
moisture content at post-harvest. This exclusion 
was based on two considerations: (i) both 
production systems deliver soybeans at a 
standardized moisture content, implying similar 
post-harvest drying requirements, and (ii) primary 
energy data for grain drying were not available 
for the conventional reference system, and 
including only modeled values could introduce 
bias into the comparative assessment. Although 
grain drying can influence absolute values, 
particularly for GWP, its omission is unlikely to 
affect the relative performance between systems, 
which is the focus of this attributional LCA. 
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Fig. 3. System boundaries of soybean production from cradle to farm gate 
Note: Diagram of life cycle stages included in the LCA, covering all agricultural inputs, operations, and 

machinery, excluding grain drying 

 

2.5 Life Cycle Inventory 
 
Data for the PA system was obtained through 
direct cooperation with the farm (field-level 
nutrient inputs) and from EMBRAPA sources 
(chemical input data). The life cycle inventory 
(LCI) includes all foreground input and output 
data (Table 1) and direct field emissions were 
estimated using IPCC (2006, Tier 1) emission 
factors. It was assumed that 1% of the applied 
nitrogen is emitted as N₂O-N, in addition to 
volatilization and leaching estimates based on 
standard methodologies. This allowed for a more 
realistic assessment of the additional impact on 
GWP. This approach aligns with streamlined 
LCA practices in agricultural settings, where 
comparative attributional assessments 
emphasize foreground process data and 
upstream input manufacturing impacts (ISO 
14044, 2006; Nemecek et al., 2015). By 
standardizing emission assumptions across both 
systems, the analysis maintains methodological 
consistency and highlights the environmental 
benefits attributable to site-specific fertility 
management under PA. 
 
For the conventional system, the LCI was based 
on Ecoinvent data calibrated by Brazilian 
Agricultural Research Corporation (EMBRAPA) 

and aligned with methodological guidelines from 
Agroscope (Nemecek & Schnetzer, 2012; 
Nemecek et al., 2015). 
 
Pesticide use was standardized across both 
systems to isolate the environmental effects of 
fertility management. Lime and gypsum 
application rates were adjusted annually 
according to crop requirements. Phosphorus 
(monoammonium phosphate) and potassium 
(potassium chloride) applications followed crop-
specific recommendations. Although seed and 
micronutrient inputs were higher per hectare 
under the PA system, their relative environmental 
impact was lower when normalized per unit of 
output. 
 
Fuel consumption per hectare was reportedly 
lower in the PA system compared to the 
conventional system, primarily due to the use of 
auto-guidance technology, which reduces 
overlapping passes and optimizes field traffic 
patterns. Although the conventional system lacks 
this operational efficiency, the observed 
reduction in fuel use under PA is supported both 
by farmer reports and by findings in the literature 
(Gasso et al., 2014; Li et al., 2016; Balafoutis et 
al., 2017; Petrovic & Csambalik, 2025; Jensen & 
Tullberg, 2025). 
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Table 1. Comparative input and output data per hectare for precision and conventional 
systems 

 

Parameter Input/Output ha-1  Unit PA Conventional Source (PA) 

Tillage Lime (CaCO3) kg 84,67 130,00 measured 
Gypsum (CaSO4) 100,00 130,00 measured 
2,4 D kg 

a.i.  
0,90 0,00 measured 

Glyphosate 0,80 0,80 Folegatti-Matsuura et al., 2018 
Paraquat 0,40 0,40 Folegatti-Matsuura et al., 2018 
Fuel l 3,15 - measured 

Planting P2O5 kg 51,88 70,00 measured 
Seed 55,00 50,00 measured 
Fuel l 5,89 - measured 

Cultivation K2O kg 51,88 70,00 measured 
Molybdenum 0,025 0,020 measured 
Cobalt 0,0050 0,0025 measured 
Copper 0,03 0,02 measured 
Carbendazim kg 

a.i.  
0,501 0,501 Folegatti-Matsuura et al., 2018 

Azoxystrobin 0,12 0,12 Folegatti-Matsuura et al., 2018 
Thiamethoxam 0,0333 0,0333 Folegatti-Matsuura et al., 2018 
Lambda-
cyhalothrin 

0,0125 0,0125 Folegatti-Matsuura et al., 2018 

Cyproconazole 0,048 0,048 Folegatti-Matsuura et al., 2018 
Mineral oil 0,642 0,642 Folegatti-Matsuura et al., 2018 
Fipronil 0,03 0,03 Folegatti-Matsuura et al., 2018 
Pyraclostrobin 
(prop) 

0,003 0,003 Folegatti-Matsuura et al., 2018 

Thiophanat-methyl 0,027 0,027 Folegatti-Matsuura et al., 2018 
Thiodicarb 0,096 0,096 Folegatti-Matsuura et al., 2018 
Chlorimuron-ethyl 0,025 0,025 Folegatti-Matsuura et al., 2018 
Bifenthrin 0,020 0,020 Folegatti-Matsuura et al., 2018 
Imidacloprid 0,0999 0,0999 Folegatti-Matsuura et al., 2018 
Glyphosate 2,16 2,16 Folegatti-Matsuura et al., 2018 
Paraquat 0,30 0,30 Folegatti-Matsuura et al., 2018 
Fuel l 3,25 - measured 

Harvesting Grain production kg 3780,00 3000,00 measured 
Fuel l 3,00 - measured 

Note: Comparative data on fertilizer, pesticide, seed, and fuel use in both systems, based on primary field data 
(PA) and secondary data from EMBRAPA (conventional system) 

 

2.6 Life Cycle Impact Assessment 
 
The environmental impact assessment was 
performed using the CML-IA baseline 2000 
method (version 3.2) implemented in SimaPro 
9.2 software (Pré Consultants). The impact 
categories analyzed included EP,  GWP, HTP, 
and AP. All impacts were calculated per kilogram 
of soybean grain, standardized at 13% post-
harvest moisture content. 
 
Temporal variation over the five-year period was 
analyzed using Monte Carlo simulation 
techniques. A total of 10,000 iterations were 
conducted to estimate empirical distributions for 
the environmental impact indicators (AP, EP, 
GWP, HTP), based on the means and standard 

deviations observed in the study years. The 
analysis was implemented in R software (v4.3) 
using tidyverse, EnvStats, and mc2d packages. 
Results are reported as means with 95% 
confidence intervals (2.5th and 97.5th 
percentiles). 
 

3. RESULTS AND DISCUSSION 
 
The PA system required fewer inputs than 
conventional methods, leading to lower 
environmental impacts across all categories 
analyzed (Table 2). These results demonstrate 
how optimized fertilizer application through 
precision fertility management can effectively 
reduce environmental burdens and contribute to 
more sustainable farming practices.  
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Table 2. Life cycle environmental impact indicators per kilogram of soybean grain under conventional and precision agriculture systems 
 

Impact Category Unit Conventional (average [CI 95%]) PA (average [CI 95%]) Reduction (%) 

Acidificação (AP) kg SO₂ eq 0,00151 [0,00147–0,00155] 0,00103 [0,00100–0,00107] −31,79% 

Eutrofização (EP) kg PO₄ eq 0,00549 [0,00534–0,00565] 0,00215 [0,00208–0,00222] −60,84% 

Aquecimento Global (GWP) kg CO₂ eq 0,185 [0,181–0,189] 0,132 [0,128–0,136] −28,65% 
Toxicidade Humana (HTP) kg 1,4-DB eq 0,0783 [0,0758–0,0807] 0,0630 [0,0609–0,0651] −19,54% 
Note: Life Cycle Assessment results for four impact categories, normalized per 1 kg of soybean grain (13% moisture), considering cradle-to-farm-gate system boundaries 

 

 
 

Fig. 4. Confidence intervals for environmental impacts from monte carlo simulations (soybean, 2019–2023) 
Note: The confidence intervals are described in Table 2 
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The results, presented in Table 2, reflect the 
mean values estimated over the study period 
(2019–2023) and include 95% confidence 
intervals derived from Monte Carlo simulations 
with 10,000 iterations based on the annual 
variability of primary data (Fig. 4). 
 
The LCA of soybean production under PA 
practices revealed reductions of 31.79% in AP, 
60.84% in EP, 28.65% in GWP, and 19.54% in 
HTP. As illustrated in Fig. 5, the greatest gains 
were observed in the eutrophication and global 
warming categories, underscoring the role of PA 
in optimizing fertilizer use and reducing fossil fuel 
consumption through technologies such as auto-
guidance and prescription mapping. By 
enhancing the spatial precision of fertilizer 
application, PA effectively lowers environmental 
burdens and facilitates the transition to more 
sustainable agricultural systems (Jensen et al., 
2012; Adewuyi et al., 2024; Galati et al., 2025). 
 
The impact assessment findings of this study are 
consistent with results from other research 
employing LCA methodologies to evaluate the 

environmental effects of PA technologies across 
various cropping systems. For instance, Gasso 
et al. (2014) and Milindi et al. (2024) reported 
substantial reductions in wheat and sugarcane 
production using controlled traffic farming, 
including 50% in GWP, 33% AP, 29% in EP, and 
between 3% and 15% in HTP. In sugarcane 
systems, the adoption of controlled traffic farming 
enabled an additional harvest cycle and led to 
reductions of 0.86% in GWP and 8.99% in HTP 
compared to conventional practices (Chagas et 
al., 2012; Milindi et al., 2024; Papadopoulos et 
al., 2024). In maize production, nitrogen 
application guided by canopy sensors and 
variable-rate technology resulted in GWP, AP, 
and EP reductions of 10%, 22%, and 16%, 
respectively (Li et al., 2016; Medel-Jiménez et 
al., 2024; Chang et al., 2025). Similarly, in 
viticulture, the implementation of PA techniques, 
including site-specific fertility management, 
nitrogen application via remote sensing, and 
variable-rate irrigation, yielded GWP reductions 
of 25–28%, effectively lowering the carbon 
footprint of grape production (Balafoutis et al., 
2017; Soto et al., 2019). 

 

 
 

Fig. 5. Percentage reduction in environmental impact categories from conventional to 
precision agriculture (per 1 kg of soybean)   

Note: Comparative reduction in Acidification Potential, Eutrophication Potential, Global Warming Potential, and 
Human Toxicity Potential per kg of soybean under PA versus conventional practices 
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Fig. 6. Relative contribution of production stages to environmental impacts in conventional 
and precision agriculture systems 

Note: Share of environmental impacts attributed to each stage (tillage, planting, cultivation, harvesting), 
highlighting efficiency gains achieved through PA) 

 
While the system-wide results presented in Table 
2 clearly demonstrate that PA technologies 
reduce environmental impacts, a disaggregated 
LCA analysis offers deeper insights. By 
examining the individual contributions of each 
operational stage, it becomes possible to identify 
targeted opportunities for further improvement. In 
both systems (Fig. 6), the planting operation 
accounted for the largest share of impacts in the 
AP and GWP categories, 41.13% in the PA 
system and 49.18% in the conventional system. 
This predominance is primarily attributed to the 
environmental burden associated with seed 
production. Soybean seeds carry an embedded 
life cycle from prior cultivation stages, 
encompassing all related inputs and emissions, 
which are incorporated into the LCA. This 

highlights the importance of considering the 
upstream impacts of seed production in 
agricultural LCAs and suggests that future 
research or sustainability efforts could                      
focus on developing lower-impact seed 
production systems or alternative seed sources 
(Costantini & Bacenetti, 2021; Medel Jiménez et 
al., 2024). 
 
Although the PA system involved a slightly higher 
seed input (Table 1), its 26% higher yield diluted 
this effect, resulting in a comparatively lower 
relative contribution of the planting stage. 
Specifically, the planting operation in the PA 
system exhibited approximately 13% lower 
environmental impact than in the conventional 
system. 
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Cultivation and harvesting stages represented 
substantial contributions to AP and Global GWP, 
driven by embodied energy in machinery 
manufacturing and fossil fuel consumption. The 
implementation of PA for fertility management 
resulted in estimated reductions of 10–20% in 
these impacts. These gains are attributed to 
optimized input-use efficiency, through site-
specific application (GPS, sensors, variable-rate 
technology), and reduced field traffic and fuel 
consumption (Gasso et al., 2014; Li et al., 2016; 
Jensen & Tullberg, 2025), facilitated by auto-
guidance technologies that minimize overlapping 
passes (Section 2.5). PA, therefore, 
demonstrates itself as an effective strategy for 
sustainable intensification, mitigating the 
environmental footprint and soil compaction 
(Kumar et al., 2018; Mgendi, 2024). 
 
Given the widespread use of no-tillage systems 
in soybean production, tillage operations are no 
longer a dominant environmental hotspot (Telles 
et al., 2018; Possamai et al., 2022). Within the 
tillage stage, the most impactful processes were 
the application of plant protection products via 
field sprayers (accounting for 20–50% of the 
stage’s impacts) and fertilizer broadcasting (2–
5%). PA technologies reduced these impacts by 
approximately 20% through more precise input 
targeting and application. 
 
The cultivation stage had a particularly strong 
influence on EP and HTP, which is consistent 
with LCA expectations due to the intensive use of 
fertilizers and agrochemicals during this phase. 
In the PA system (Villagrán et al., 2024), 
reductions of approximately 10–20% were 
observed across key unit processes. This 
highlights how improvements in a single 
production stage can have cascading benefits 
throughout the agricultural value chain (Plouffe et 
al., 2011; Talaviya et al., 2020; Monteiro et al., 
2021; Sanyaolu & Sadowski, 2024). The main 
driver of these impacts during the cultivation 
stage is the interaction between applied 
nutrients, heavy metals, and pesticides with soil 
and water systems (Nemecek et al., 2015; 
Balafoutis et al., 2017; Avellaneda-Torres et al., 
2022). 
 

3.1 Sensitivity Analysis 
 
The sensitivity analysis showed that 
eutrophication potential was most affected by 
variations in phosphorus and potassium rates, 
while GWP was primarily influenced by diesel 
use. Simulated variations of ±20% confirmed the 

robustness of PA’s benefits, with comparative 
impact differences remaining under 10%. Even 
with increased direct emissions from nitrogen 
fertilizers, PA maintained about 25% lower total 
GWP per kilogram of soybean. 
 

3.2 Complementary Statistical Analysis: 
Simulation and Comparative Inference 

 

To reinforce the robustness of the LCA results 
and incorporate variability associated with 
fertilizer use, we conducted a Monte Carlo 
simulation with 10,000 iterations for the global 
warming potential (GWP, kg CO₂ eq per kg of 
soybean), based on the observed means and 
standard deviations for both the conventional and 
PA systems. 
 

In addition, we tested the sensitivity of the PA 
system to a simulated 20% increase in nitrogen 
application, following scenario analysis 
guidelines (Fig. 7). The parameters used were as 
follows: GWP (Conventional): mean = 0.185 kg 
CO₂ eq, standard deviation = 0.004; GWP (PA): 

mean = 0.132 kg CO₂ eq, standard deviation = 
0.004, and GWP (PA +20% N): adjusted mean = 
0.145 kg CO₂ eq, standard deviation = 0.0044. 
We simulated three normal distributions and 
compared the scenarios using statistical tests: 
Welch’s t-test for unequal variances; Mann-
Whitney U test (non-parametric) and 
Kolmogorov-Smirnov test for full distribution 
comparison. 
 

The results revealed statistically significant 
differences (p < 0.001) between the conventional 
and PA systems, as well as between PA and PA 
with +20% N, across all comparisons. This 
confirms the environmental robustness of the PA 
system even under increased nitrogen input 
scenarios. 
 

Furthermore, visualizations of the simulated 
distributions (density plots) showed that the PA 
system not only achieved a lower mean impact 
but also exhibited reduced variability, further 
reinforcing its environmental viability. 
 

3.3 Operational Implications and Policy 
Relevance 

 

Analyzing environmental impacts by stage 
highlights planting and cultivation as key 
contributors. PA technologies reduced these 
impacts through targeted input applications 
based on spatial fertility data. Despite a slight 
increase in seed use, higher yields under PA 
ensured superior environmental performance. 
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Fig. 7. Probability density functions of global warming potential for soybean production 
systems under conventional and precision agriculture scenarios 

 
These quantitative findings support policies to 
scale PA adoption in Brazil, where usage 
remains limited. Besides environmental benefits, 
input optimization can enhance economic 
performance and agricultural competitiveness. 
 

3.4 Limitations and Extrapolation of 
Findings 

 
Although this study provides compelling evidence 
of the environmental benefits of PA for site-
specific fertility management in soybean 
systems, some limitations should be 
acknowledged regarding the extrapolation of 
these results to other agricultural contexts. 
 
The study was conducted on a commercial farm 
in Caarapó, Mato Grosso do Sul, characterized 
by high-clay Oxisol soils, a soybean–maize crop 
rotation, and no-tillage practices. These 
edaphoclimatic conditions, along with annual 
precipitation levels and farm-level management 
strategies, can influence the effectiveness of PA 
technologies. As such, the environmental 
performance gains observed here may not be 
fully replicable in regions with different soil 
textures (e.g., sandy soils with lower nutrient 
retention), water constraints, or in 
agroecosystems subject to greater climatic 
variability. 
 
Moreover, the studied farm benefits from high 
mechanization levels and access to technical 
support, which may not reflect the realities of 

small- and medium-sized farms, where capital 
and digital infrastructure are often more limited. 
These structural differences may affect both the 
adoption and the effectiveness of PA practices. 
 
It is also important to note that this study focused 
exclusively on fertility management. Other 
components of crop production, such as pest 
management, irrigation, or harvesting logistics, 
also contribute substantially to environmental 
impacts and may interact with PA tools in 
complex ways. 
 
Finally, the quasi-experimental design, while 
reinforced by five years of primary data and 
Monte Carlo simulations, does not include spatial 
replications across multiple farms or biomes. 
Thus, generalizations to other Brazilian regions, 
such as the Amazon, Caatinga, or Pantanal,                 
or to diversified farming systems (e.g., 
polycultures, agroforestry) should be approached 
with caution. 
 

4. CONCLUSIONS 
 
This study provides compelling evidence that 
Precision Agriculture technologies significantly 
enhance the environmental sustainability of 
soybean production systems. By improving 
fertility management through spatially explicit 
input use, PA reduced key environmental 
impacts, including global warming, 
eutrophication, acidification, and human toxicity 
potentials, compared to conventional practices. 
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Estimates of direct emissions and the sensitivity 
analysis further reinforced the robustness of the 
findings. The results demonstrate that even 
under input variability scenarios, PA consistently 
outperforms conventional management in terms 
of environmental performance. 
 

The consistent reductions across multiple impact 
categories reinforce PA's role as a viable 
strategy for sustainable intensification, especially 
in large-scale farming operations. Beyond 
environmental gains, the optimized use of                  
inputs also implies potential economic 
efficiencies that could strengthen the business 
case for broader PA adoption in Brazil and 
beyond. 
 

Importantly, PA should not be viewed in isolation 
but as part of a broader transition toward climate-
smart and resource-efficient agriculture. The 
integration of PA with supportive policies, 
inclusive financing mechanisms, and capacity-
building programs could accelerate its adoption 
and maximize its environmental and socio-
economic benefits. 
 

Future research should explore the long-term 
effects of PA adoption across different 
agroecosystems, and assess trade-offs related to 
energy use and system resilience. Moreover, 
investigating PA's impacts on biodiversity, soil 
health, and rural livelihoods would provide a 
more holistic understanding of its role in 
sustainable agriculture. 
 

Ultimately, fostering a knowledge-based 
transition supported by empirical evidence, such 
as this study, can enable producers, 
policymakers, and stakeholders to align 
agricultural productivity with global sustainability 
goals. 
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