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ABSTRACT

This paper introduces the framework of generalized dual hyperbolic Pandita numbers, contributing a novel
class of structured sequences to the expanding domain of number theory. Anchored in the principles of dual
and hyperbolic systems, these constructs pave the way for exploring algebraic symmetries and recursive
behaviors beyond classical formulations. Particular attention is devoted to notable special cases, including
the dual hyperbolic Pandita and dual hyperbolic Pandita-Lucas numbers, whose properties are meticulously
examined. To deepen understanding and facilitate computation, we derive explicit closed-form representations
using Binet-type formulations, construct generating mechanisms through formal power series, and establish
summative expressions with broad applicability. Additionally, matrix-based representations are developed to
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offer an algebraic lens through which structural dynamics can be modeled and analyzed. These formulations
not only enrich the theoretical foundations of discrete mathematics and symbolic computation but also highlight
promising applications in engineering disciplines—particularly in the modeling of iterative systems, signal
transformations, and the analysis of complex networks. The insights presented herein lay groundwork for future
exploration into hybrid sequence systems and their role in interdisciplinary problem solving.

Keywords: Pandita numbers; Pandita-Lucas numbers; dual hyperbolic numbers; dual hyperbolic pandita numbers.

2020 Mathematics Subject Classification: 11B37, 11B39, 11B83.

1 INTRODUCTION

The hypercomplex numbers systems, (Kantor and Solodovnikov, 1989), are extensions of real numbers. Some
commutative examples of hypercomplex number systems are complex numbers,

(C:{z:aJrib:a,bER,zQ:fl},

hyperbolic (double, split-complex) numbers, (Sobczyk, 1995),

H={h=a+jb:a,beR,j*>=1,j#=*1},
and dual numbers, (Fjelstad and Gal, 1998),

D={d=a+¢eb:abecR,e=0,e#0}.
Some non-commutative examples of hypercomplex number systems are quaternions, (Hamilton, 1969),

Hg = {q = ao + ia1 + jaz + kas : ao, a1, a2, as ER,i’ :j2 = k2 =ijk = -1},

octonions (Baez, 2002) and sedenions (Soykan, 2019e) are part of a sequence of real algebras constructed
through a recursive method known as the Cayley—Dickson process. The algebras C (complex numbers), Hg
(quaternions), O (octonions) and S (sedenions) are all derived from the real numbers R via this doubling procedure.
The process can be extended beyond sedenions to generate higher-dimensional algebras known as 2"-ions [see
for example (Biss et al., 2008; Imaeda and Imaeda, 2000; Moreno, 1998)].

Quaternions were introduced by the Irish mathematician W. R. Hamilton (1805-1865) as an extension of the
complex numbers (Hamilton, 1969). Hyperbolic numbers with complex coefficients were first studied by J. Cockle
in 1848 (Cockle, 1849). Later, H. H. Cheng and S. Thompson (Cheng and Thompson, 1996)] introduced dual
numbers with complex coefficients, which they termed complex dual numbers. Dual hyperbolic numbers were
subsequently introduced by Akar et al. (2018).

A dual hyperbolic number is a hyper-complex number and is defined by

q = (a0 + jai) +e(az + jas) = ao + jai + €az + €jas
where ag, a1, a2 and as are real numbers.

The set of all dual hyperbolic numbers are denoted by

Hp = {ao + jai 4+ €az 4+ €jas : ao, a1, az2,a3 € R, j2 =1,7 75 :tl,82 =0,¢ 3& 0}
The base elements {1, j, ¢, 5} of dual hyperbolic numbers satisfy the following properties (commutative multiplications):

le = glj=j e =ce=(je)’=0,j°=jj=1
ej = Je& elef) =(cf)e=0,j(ej)=(ej)i=¢
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where e denotes the pure dual unit (2 = 0,¢ # 0), j denotes the hyperbolic unit (j2 = 1), and €5 denotes the dual
hyperbolic unit ((je)? = 0).

The product of two dual hyperbolic numbers ¢ = ao + jai + caz + jeas and p = by + jb1 + €ba + jebs is

qp = aobo + a1b1 + j(aob1 + a1bo) + (aobz + a2bo + a1bs + asb1) + je(aobs + a1b2 + a2bi + boas)
and addition of dual hyperbolic numbers is defined as componentwise.
The set of dual hyperbolic numbers constitutes a commutative ring, a real vector space, and an algebra. However,

H_D does not form a field, as not every dual hyperbolic number possesses a multiplicative inverse. For further
details on the algebraic structure and properties of dual hyperbolic numbers, see (Akar et al., 2018).

We now recall the definition of generalized Pandita numbers.

A generalized Pandita sequence {W,, } >0 = {W,(Wo, W1, W2, W3) },,>0 is defined by the fourth-order recurrence
relations

Wn =2Wp1 — Wy + Wyp_3 — Wy_4 (1.1)

with the initial values Wy, W1, W2, W3 not all being zero. The sequence {W, },.>0 can be extended to negative
subscripts by defining

Won =2W_(n_1) = W_tn_oy + W_(n_3) — W_(n_y
for n = 1,2,3,.... Therefore, recurrence (1.1) holds for all integer n. Soykan has conducted a study on this
particular sequence, for more details, see (Soykan, 2023).

The first few generalized Pandita numbers with positive subscript and negative subscript are given in the following
Table 1.

Table 1. A few generalized Pandita numbers

n Wh W_n

0 Wo Wo

1 Wi Wo — W1 +2Wo — W3
2 Wo Wi+ Wa —Ws

3 W3 Wo + W1 — Wa

4 Wi — Wy — Ws + 2W3 2Wo — 2W1 + 2Wo — W3
5 Wy —2Wo — Wo + 3W3 3Ws — 2W3

6 W1 — 3Wy — 2Ws + 5W3 3W1 — 2Ws

7 2W71 — 5Wqo — 4Ws + 8W3 3Wo — 2W1

8 3W1 — 8Wy — 6Ws + 12W35 Wo — 3W1 + 6Wo — 3W3
9 4Wr — 12Wo — 9Ws + 18W3 5Wi —2Wo — W — W3
10 6W1 — 18Wy — 14Ws + 27W3 3Wo + W71 — 5Ws + 2W3
11 OW, — 27TWo — 21W5 + 40W3 4Wo — 8W1 + 8Ws — 3W3
12 13W71 — 40Wy — 31Ws + 59W3 4W1 — AWy + 5Wo — 4W3
13 19W; — 59Wy — 46W5 + 87TWs OWy — 12Ws + 4Ws

If we set Wy = 0,W1 = 1,W> = 2, W3 = 3 then {W,} is the well-known Pandita sequence and if we set
Wo =4, W =2, W, = 2, W3 = 5 then {W,,} is the well-known Pandita-Lucas sequence. In other words, Pandita
sequence { P, },.>o and Pandita-Lucas sequence { S }.>0 are defined by the second-order recurrence relations
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P,=2P, 1 —Py o+ Py 3—Po4, Py=0,P =1P =2P;=3, n >4, (1.2)
and

Sn =251 — Sn—2+ Sn—3 — Sn—a, So=4,51=2,5 =2,5; =5, n > 4. (1.3)
The sequences { P, }.>0 and {S, }.>0 can be extended to negative subscripts by defining

Pon=P_ (n1) = P_(n—2) +2P_(n_3) — P_(n—y)
and

S—n=8_(n-1) =S _(n—2) +25_(n—3) — S_(n—a),
forn = 1,2, 3, ... respectively. Therefore, recurrences (1.2) and (1.3) hold for all integer n.
We can list some important properties of generalized Pandita numbers that are needed.
» Binet formula of generalized Pandita sequence can be calculated using its characteristic equation which is
given as
-2 bt —r 1= -2 - 1)(z-1)=0

The roots of characteristic equation are

1/3 1/3
w o= L2, [0\ (20 [31
-3 54 108 54 108 ’
1/3 1/3
6 — 1_|_w %4_ ﬂ _|_w2 @_ 2
3 54 108 54 108 ’
1/3 1/3
_ L2 3T 29 31
T 3T \ma 108 “\ 5 108)
5 = 1,
where
w= _l%ﬁ = exp(2mi/3).

Using these roots and the recurrence relation, Binet formula can be given as

zia” 228" z3y"
W, =
30—2 1 33-2 3y-2 1%

= A" + Ax8" + Asy" + Ag,

where z1, z2 and z3 are given below

21 = (aWs—a2—a)Wa+ (—a® +a+1)Wy — W),
2 = (BWs—B2—BWat (=5 + B+ 1)W1 — W),
o= (Ws =2 = )Wa+ (=7 + 7+ W1 — W),
za = —Ws+Wo+ W.
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and

21

= =2 1.4
A 30— 2 (14)
z2
A =
2 35_27
zZ3
A =
? 3y -2’
A4 = Z4.

Binet formula of Pandita and Pandita-Lucas sequences are

n+3 n—+3 n+3
Po= X B0
30—2  38-2  3y—2

— 1’
and

Sp=a" + 8" +9" +1,
respectively.

» The generating function for generalized Pandita numbers is

iw L — Wo + (W1 — 2Wo)z + (Wa — 2W1 + Wo)a? + (W3 — 2Ws + Wy — Wo)z®
v B 1—2x+ 22— a3+ a4 '

For more details about generalized Pandita numbers, see (Soykan, 2023).

Next, we give the exponential generating function of > W, 2 of the sequence W.,,.

n!

n=0
Lemma 1.1. (Kalgca and Soykan, 2025), Lemma 1.4]. Suppose that fw, (z) = >, Wn% is the exponential
n=0
generating function of the generalized Pandita sequence {W,, }.
Then i W, 2} is given by
n=0
i w2 (aWs—a2—a)Ws + (—a? 4+ a4+ )Wy — W) po
o "nl T 3a—2
(BWs — B(2 = B)W2 + (=5° + B+ YW1 — Wo) 4,
+ e
38 —2
LOWs =y =)Wo+ (=" + 7+ DWi = W) e
3y —2

+(=W3 + Wa + Wo)e®.
The previous Lemma 1.1 gives the following results as particular examples.

Corollary 1.2. Exponential generating function of Pandita and Pandita-Lucas numbers

o) n 0o an+3 ﬂn+3 ,_yn+3 mn a3€az BSGBZ 73671
P,z = —nE = e
a) nZ::O ! nz::(](?)a—2+3,8—2+3'y—2 )n! 3a—2+36—2+37—2
oS n oS n
b) 3 Snfr= X (0" + 8" +9" + 1) =€ 4P 7 e
n=0 n=0

416



KALCA and Soykan; Arch. Curr. Res. Int., vol. 25, no. 8, pp. 412-436, 2025; Article no.ACRI.141230

Next, we give some information on published papers related to hyperbplic and dual hyperbolic numbers in literature.

» Cockle (1849) presented the hyperbolic numbers with complex coefficients.
» Akar et al. (2018) introduced the dual hyperbolic numbers.
» Cheng and Thompson (1996) studied dual numbers with complex coefficients.

Next, we give some information related to dual hyperbolic sequences presented in literature.

« Soykan et al. (2021) introduced dual hyperbolic generalized Pell numbers given by

Vi = Va4 jVai1 + eViia + jeViis

where generalized Pell numbers are given by V,, = 2V,,_1 + Vii—2, Vo = a, V1 = b (n > 2) with the initial values
Vb, V1 not all being zero.

» Cihan et al. (2019) studied dual hyperbolic Fibonacci and Lucas numbers given by, respectively,
DHFn = Fn +an+l +5Fn+2 +j5Fn+37
DHLn = Ln +jLn+1 + €Ln+2 + ngn+3~

where Fibonacci and Lucas numbers, respectively, given by F,, = Fp,_1 + F,—2,Fo = 0,Fy = 1,L,, =
Lnfl + Ln72, LO == 2, Ll =1.

» Soykan et al. (2023) introduced dual hyperbolic generalized Jacopsthal numbers given by

j\n =Jn +jJn,+1 + 5Jn+2 +j€Jn+3
where J,, = Jo—1 4+ 2Jp—2,Jo = a,J1 =b.

» Bréd et al. (2020) studied dual hyperbolic generalized Balancing numbers are

DHBn = Bn +jB7L+1 + 5Bn+2 + stn+3
where Bn = GBn_l — Bn_Q,Bo = 0, Bl =1.

* Yilmaz and Soykan (2024) introduced dual hyperbolic generalized Guglielmo numbers are

To =To + 3T + €15 + jeTs
where Ty =3Tn—1—3Th—2+ Tn_g,To = O,Tl = 1, T, = 3.

» Dikmen (2025) introduced dual hyperbolic generalised Leonardo numbers given by
To = lo + jlu + el2 + jels
In =2n_1 —ln_s,lo=1,11 =1,lo = 3.

» Soykan et al. (2021) introduced dual hyperbolic generalized Woodall numbers given by

ﬁo =Ro+jRi1 +cR2 + jeR3
where R,, = 5R,—1 — 8R,_2 +4Rn_3, Ro = *1,R1 = 1,R2 =T.

In this paper, we define the dual hyperbolic generalized Pandita numbers in the next section and give some
properties of them.
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2 DUAL HYPERBOLIC GENERALIZED PANDITA NUMBERS AND THEIR
GENERATING FUNCTIONS AND BINET’S FORMULAS

In this section, we define dual hyperbolic generalized Pandita numbers and present generating functions and Binet
formulas for them. We now define dual hyperbolic generalized Pandita numbers over Hy. The nth dual hyperbolic
generalized Pandita number is

Wn - Wn+jWn+1 +5Wn+2 +j€Wn+3v (21)
The sequence {Wn}nzo can be extended to negative subscripts by defining

/V[?—n =W_n +jW_nt1 +eW_rio + jeW_p43.
forn = 1,2, 3, ... respectively. Therefore, recurrence (2.2) holds for all integer n. Note that

W\O = Wo+ jWi+eWs + jeWs

Wl = Wi+ jWao+ecWs + jeWy = Wi + jWa + eWs + je(Wr — Wo — Wa + 2W3)

Wo = Wo jWa+eWa+ jeWs = Wo + jWs + (Wi — Wo — Wa + 2W3) + je(W1 — 2Wo — W + 3W3)
Ws = Wi+ Wit eWs+jeWs = W + j(Wi — Wo — Wa + 2W3) + e(Wi — 2Wo — Wa + 3W5)

+jE(W1 — 3Wy — 2Ws5 + 5W3)
It can be easily shown that
Wn = Q/anl - W\'rLfZ + /W\nf?) - /W\n74 (22)

and

—

W_, = W_tn-1) — Wf(n72) + 2W7(n73> — W_(n-4)

The first few dual hyperbolic generalized Pandita numbers with positive subscript and negative subscript are given
in the following Table 2.

Table 2. A few dual hyperbolic generalized Pandita numbers

n Whn W_n

0 Wo Wo

1 /W\l Wg—ﬁ/\l-i-QWz—Wg
2 WQ Wl 4+ WQ — Wg

3 W3 /V‘?o -+ W1 - /W\2

4 /W1*W0*/W2+2/W3 2/W0*2W\1+2W2*W\3
5 /Wl — Z/W\O — /WQ + 3/W\3 3/W\2 — Qﬁ/\:«]

6 ﬁ/\1 — 3W\0 — 2W2 + 5ﬁ/\3 3W1 — Qﬁ/\g

7 Qﬁ/\l — 5/W\0 — 4W2 + S/W\?, 3/W\0 — 2W1

8 3W, — 8Wo — 6Wa + 12Ws Wo — 3W1 + 6Wa — 35
9 AW, — 12W, — 9W> + 18Ws 5Wy — 2Wo — W — Ws
10 6W) — 18Wy — 14Ws + 27TWs  3Wo + Wy — 5Wa + 2Ws
11 OW) — 2TWy — 21Ws + 40Ws AW, — 8Wy + 8Wa — 3Ws
12 13W) — 40Wo — 31Wa + 59Ws  4W, — AW + 5Wa — 43
13 19/W\1 — 59/W\0 — 46W2 + 87W3 91//‘71 — 121//‘72 + 4‘7[/\3
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As special cases, the nth dual hyperbolic Pandita numbers and the nth dual hyperbolic Pandita-Lucas numbers
are given as

Pn:Pn +jpn+1+€Pn+2 +j€Pn+3 (23)
and

~

Sn = Sp + jSn+1 + €Sn+2 + jeSn+3 (2.4)
respectively. The sequences { P, }.>o and {5, }»>0 can be extended to negative subscripts by defining

P,= P_(n_1) = P_(n_2) + 2P_(n_3) — P_(n_y)
and

S, = S_(n—1) = S—(n-2) +25_(n-3) = S_(n—9)
forn = 1,2, 3, ... respectively. Therefore, recurrence (2.3) and (2.4) holds for all integer n

For dual hyperbolic Pandita numbers (taking W,, = P,,, Po =0,P; =1, P, = 2, P; = 3,) we get

Py = j+2¢+3je,
P = 2j+3c+5je+1,
P, = 3j+5c+8je+2,

and for dual hyperbolic Pandita-Lucas numbers (taking W,, = S,,, So =4, 51 = 2,52 = 2,55 = 5,) we get

So = 2j+2 +5je+4,
Si = 2j+5e+6je+2.
Sy = b5j+6e+Tje+2

A few dual hyperbolic Pandita numbers and dual hyperbolic Pandita-Lucas numbers with positive subscript and
negative subscript are given in the following Table 3 and Table 4.

Table 3. Dual hyperbolic Pandita numbers

n P, P_,

0 7+ 2+ 3j¢e Jj+ 2+ 3j¢
1 2j+3e+5je+1 €+ 2je
2 37 4+ 5 +8je +2 —je

3 5] + 8+ 12je + 3 -1

4 85+ 12+ 18je +5 —j—1

5 1254 18¢ 4+ 27je + 8 —j—c

Table 4. Dual hyperbolic Pandita-Lucas numbers

n Sn S_n

0 2j + 2+ 5je+4 2j +2e+5je+4
1 27 + 5e + 6je + 2 —45 +2e +2je +1
2 5j + 6e + Tje + 2 j+4e+2je -1

3 6j + 7+ 11je +5 e—j+4je+4

4 7j+1le +16je +6 4j —e+je+3

5 11j+16e +22je +7 —3j+4e—je—4
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Now, we will state Binet’s formula for the dual hyperbolic generalized Pandita numbers and in the rest of the paper,
we fix the following notations:

= 1+ja+5a2+jz-:a3,
= 1+jB+ep*+jep’.
L+ jy+ev’ +jey°
= T=1+4+j4¢c+je,

o) 2) @) Q)
|
AN RN

Note that we have the following identities:

= 1+a’+2aj+2a° (o® +1)e+4a’je
= 148+ 28+ (28" +28%)e + 4jef°,
aB = l1+aB+(a+p)j+ (o +8°+2a8° +a’B) e + (a + B) (o + 5°) e,
B = 1+’ +82+a8 +2(af+ 1) (a+B)j+2(®+ 8+’ +4aB+1) (o® + %) e
+4(a+ ) (o + 6% + ap’) je,
ap? = 1484208+ (a+28+aB?)j+ (B2 +2aB+1) (o +26%) e+ (a4 28+ aB?) (a® +287) je,
= 1+ +a’+a’B+4aB+2(@B+1) (a+B)j+2(a”+ B +a°B +4aB+1) (o’ +5%)e
+4(aB+1) (a+ ) (a” + 57) je
Theorem 2.1. (Binet's Formula) For any integer n, the nth dual hyperbolic generalized Pandita number is
W = A1a"a + A2B"B + Asy"3 + 1Aa. (2.9)
where @, 5, q, 5 are given as (2.5)-(2.8)

Proof. Using Binet’s formula

W, = Ar1a" + AsB™ + Asy"™ + As.
where A;, Az, A3, A4 are given in (1.4) we get

Wn = Whp+ iWhpi +eWnpo + jeWnys
= A"+ A"+ Ay + Aa+j(Aa"T AT 4 Ay 4 A
+e(A1a™? 4+ A" 4 Ay 4+ Ay) + je(Ara” T + A2 4 A3y 4 Ag)
= A1a"(1+ja+ea® + jed®) + A" (1 4 jB + e8> + jeB?)
+A3Y" (1 +j7 +e7° +7e7°) + As(1+j + £ + je)
= A1a"8+ A2B8"B + Asy"d + 1As.
This proves (2.9). O

As special cases, for any integer n, the Binet's Formula of nth dual hyperbolic Pandita number is

- an+3a /Bn+3ﬂ ,_Yn+3;y\

> — - 2.10
3a72+3ﬁ72+3'yf2 (210)

and the Binet’'s Formula of nth dual hyperbolic Pandita-Lucas number is
S, =aa" + BA" + 37" +1, 2.11)

Next, we present generating function.
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Theorem 2.2. Let fw, (z) = f} W,z donate the generating function of dual hyperbolic generalized Pandita
n=0

numbers is given as follows:

n_ Wo + (Wl — 2Wo)ﬂ7+ (W2 —2W, +Wo)$2 + (/Wa —2Ws + W, — W()).Z‘3
N 1—2z+ 22 — 23 + ot ’

an (:C) = Z /an
n=0

Proof. Using the definition of dual hyperbolic Pandita numbers, and substracting = f(x), 2 f(z) and 2* f () from
f(x) we obtain (1 — 2z + 2% — 2 + x4)fwn (z)

(1—2z+2" -2+ x4)an (z)

[e @) oo oo oo oo
= E Wyez" — 2z E Woa™ + 22 E W™ — 2 E Woa™ + 2t E Waz™,
n=0 n=0 n=0 n=0 n=0
oo o0 oo oo oo
— — ) — R — — 4
= ) Waa" —2> Wea" 4> Wea" =3 Wea" 4 YT Wt
n=0 n=0 n=0 n=0 n=0

oo

= Z ann -2 Z W(n,l)xn + Z W(n,g)mn — Z /W(n,3)a7n + Z /W(n,@xn,
n=0 n=1 n=2 n=3 n=4
= (ﬁ/\o + Wiz + Waa® + /W3JC3) - 2(W0$ + Wiz? + W\ng) + (/WOJJQ + W\1$3) - /W0333
+ Z(Wn - Q/anl - /Wn72 - Wn73 + /anél)wn;
n=4
= /Wo —+ (W1 — Q/Wo)m —+ (/WQ — 2/V[71 —+ /Wo)wz =+ (Wg — 2/M72 =+ /Wl — /Wo)$3
And rearranging above equation, we get (2.2). O
The following results are immediate consequences of the preceding Theorem.
Corollary 2.3. For all integers n, we have following identities:

(5 + 5e 4+ 4je) + (1 — & — je)x + (e + je)a? + (3je)a®
1—2x+ 22 — a3 + 24 '
(2j + 2 + 5je + 4) + (e — 2§ — 6z — 4je)x + (35 — 26 + 2)x? + (26 — 45 + 8je + 7)z?
1—2z+ 22 — 23 + x4 '

a) >0 P =

b) 30, Sna” =
Theorem (2.2) gives the following results as special cases,

(1 — 2z + $2 — CL‘S + 1;4)f13n(x) = ﬁo + (ﬁl — 2?0)56 =+ (ﬁg — 2?1 + ﬁo):CZ + (ﬁg — 2?2 + ﬁl — ﬁo)l’s =
(j + 52 +4je) + (1 — € — je)z + (¢ + je)a? + (3je)z’,

(1 — 2x + 2 — 2 + I4)f§n (CC) = §0 + (§1 — 2§0)CC + (§2 — 2§1 + §0)$2 + (§3 — 2§2 + §1 — §0)Z‘3 =
(25 + 26 + 5je +4) + (6 — 2§ — 62 — 4je)x + (35 — 26 + 2)x? + (26 — 45 + 85 + 7).

Next, we give the exponential dual hyperbolic generating function of > Wn% of the sequence W

n=0

—

Wn% is the exponential dual hyperbolic generating function of the

8

Lemma 2.4. Suppose that fy (z) =

n=0

generalized Pandita sequence {W,, }.
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Then ioj W, 27 is given by
n=0

(e o)
Z WL e a + A B+ A7 + Age™,
TL

where @, 3, ¥, 5 are given as (2.5)-(2.8)
Proof. Using Binet’s formula

W, = Aja™ + A28 + Asy™ + As.
where Ay, Az, As, A4 are given in (1.4) we get

Z % = ]ZWn+1 +€ZWn+2 +]5ZWTL+S @

n=0 n=0 n=0

!
M 8

3
I
o

(Ara”™ + A28 + Agy" + Ao +5 Y (A" + A" 4 Agy™ 4 AT

n=0

I
NgE

3
Il
<}

oD (o™ 4 A Ay AT ge Z()(Ala"” AT 4 Ay AT
= (A1e™ + Ay ePT L Az + Ase®) + j(Arae™ + Agﬁeﬁz + Aszye™ + Ase®)
+e(A10”e™ 4+ As%eP 4+ Azy?e™™ 4+ Age”) + je(A1a’e®® + A B2e”” + AzyPe” + Age”)
= A1e®(1+ ja+ 4ea® + jea®) + A’ (1 4 jB + +eB° + jeB%)
+A3€" (14 jy + +ev° + jer’) + Aae®(1 4 j + +¢ + je)
= Al ) -|— A2€ B—'— Agewma —|— A4€m/1\

This proves (2.4). O
The previous Lemma 2.4 gives the following results as particular examples.

Corollary 2.5. Exponential dual hyperbolic generating function of Pandita and Pandita-Lucas numbers

oo 3 Bz YT
~ n a 8 e >
a) 3 B, = BB T _ o]
=y 3a—2 38— 2 37—2
b) Z S, J:T = e"q + eP7B + 777 + 1.

3
| |

3 OBTAINING BINET FORMULA FROM GENERATING FUNCTION

We next find Binet’s formula generalized dual hyperbolic Pandita number {/Wn} by the use of generating function
for W,.

Theorem 3.1. Binet’s formula of generalized dual hyperbolic Pandita numbers

= Q1o q208" a3y" qad”
W= o= B —a—8 "TB-a)B-1B -0 -t -B -0  G-ae-nE 7 Y
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where
q = Woa® +(W1 2/1/‘70)042—1—(I7V\o—2VV1—l—/\)oz—wo—i—ﬁ/\l—217[/\2—1—1//1./\37
@ = Wop +(W1 Qﬁ/\o)ﬁg-f—(‘//V\o—QW1+W)ﬂ—W0+W1—Z/Vl72+ﬁ/\3,
s = Wor'+ (Wa—2Wo)” + (Wo — 2W1 + Wa) 7 — Wo + Wh — 212 + W,
g = Woos+ (Wi —2Wo) & + (Wo — 2W1 + W2 ) 6 — Wo + Wi — 20 + W,
Proof. Let

h(z) =2* —2° +2° — 22+ 1.

Then for some «, 3,y and § we write

h(z) = (1 —az)(1 — Bx)(1 — yz)(1 — éz).

i.e.,
2t =2 42— 2041 =(1-ax)(1 - Bz)(1 —~z)(1 — 6z). (3.2)
Hence X B? % and } are the roots of h(x). This gives «, 3, and § as the roots of
1 1 2 1 1
M)=m s mtmtl=

This implies z* — 2® + 22 — 22 + 1 = 0. Now, by it follows that

> o n (Wl—/WO_Q/W\Q‘Fﬁ/\S) 33'3+ (/Wo—2l//v\1+ﬁ/\2) 3;2—|— (/Wl _2/W\0)$+/W\0
,;W”w - (1 — az)(1 = Ba)(1 —~2)(1 — 62) :

Then we write

(/Wl — /Wo — QW\Q =+ WJ}) z3 + (/Wo — Qﬁl\l =+ Wz) z? + (/Wl — QW\()) T+ Wo B By
(1= az)(1 = po)(1 = 72)(1 - 62) = - -0 %Y
Bs By
A—o) " G-62)
So
(/W\l — Wo — 2W2 +W3) 1'3 =+ (I//i/\o — 2‘7[/\1 +I//I72) 1’2 + (I//i/\l — QWO) x +W()
= Bi(1-pz)(1—vz)(1—96z)+ B2(1 — az)(1 —yz)(1 — éx)

+B3(1 —az)(1 - Bz)(1 —d6z) + Bs(1 — az)(1 — Bz)(1 — yz).
If we consider z = é, we get /W\o + é (Wg — 2W1 + /W\Q) — = (Wo — W1 =+ 2W2 — Wg) =+ é (/W\1 — Qﬁ/\o) =
“Bi(38-1) (g7 1) (30-1).
This gives

s~ 1 e~ o~ N1 e~ o~ N1~

Bi = o®(Wo+— (Wo oW + Wz) +— (W1 —5Wo — AW, + Wg) + = (W1 - QWO))

/Wooz3 + (/Wl — 2/1/170) o’ + (/Wo *2/1/‘71 +W2> e} */Wo +W1 — 2/1/‘72 Jr/W:s
(= B)(a=7)(a =) .
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Similarly, we obtain

ﬁ/\053'1- (Wl —2W0) B+ (WO —2W) +W2) ﬁ—ﬁ/\o + Wi — 2Ws + W

B = BB -9 ’
W073 + (/W1 — 2W0) ¥+ (Wo —2W, +W\2) ’Y*W{) + Wy — 2Ws + Wy

Bs = (v —a)r =B = 0) !
. I7V\063+(W1—2W0>52+(VV\0—2I7V\1 +VV\2)6—/WO+W1—2W2+VV\3
4 = .

(0 —a)(6=B)(6—7)

Thus (3.3) can be written as

> Waz™ =Bi(1—az)”' + Ba(1— )" + Bs(1 —yz) ' + Ba(1 — 6z)

n=0
This gives

Z ann =B Z az" + B> Z ﬁnmn + Bs Z’ynmn + By Z St = Z Bla" —+ Bgﬂn —+ B3’7n + B45n)l‘n
n=0 n=0 n=0
Therefore, comparing coefficients on both sides of the above equality, we obtain

Wn = Bia" + By + Bsy™ + Bas™.

The following identity establishes a relationship between the dual hyperbolic Pandita numbers and the Pandita—
Lucas numbers.

Corollary 3.2. For all integers m,n the following identities holds:
Wm+n = Pm72ﬁ/\n+3 + (Pm74 - P”rn73 - P’V?’L75)Wn+2 + (me?) - me4)wn+1 - Wnpmf?w

Proof. First we assume that m,n > 0.The Theorem (3.2) can be proved by mathematical induction on m. If m =0
we get
W, = P—Q/Wn+3 + (P-4 — P_3— P—s)/V[ZH-z + (P-3 — P—4)Wn+1 - WnP—:s-

which is true since P, = 0,P = —1,P_4 = —1,P_5 = 0. Assume that the equality holds for m < k. For
m =k + 1, we get

Wk+1+n = 2Wn+k - Wn+k71 + Wn+k72 - Wn+k—3,
2(Pr—aWnis + (Pm—a — Pr—s — Pm—5)Wnia + (Pm—s — Pr—a)Wni1 — WnPr_3)
_(Pm—SW\n-Q—S + (Pm—5s — P4 — Pm,—G)/Wn+2 + (Pr—a — Pm—S)/Wn+1 — /Wan—U
+(me4wn+3 + (Pm—6 — Pm—5 — me7)Wn+2 + (Pm—s — Pm76)Wn+1 — Wnpmf5)
*(Pm—5/V[7n+3 + (Pm—7 — Pm—6 — Pm—8)ﬁ/\n+2 + (Pm—¢ — Pm—7)Wn+1 - Wan—e)-

Consequently, by mathematical induction on m, this proves Theorem 3.2.
The other cases of m,n can be proved smilarly for all integers m,n. O

Taking W,, = P, or W,, = S, in above Theorem, respectively, we get:
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Corollary 3.3.
ﬁm—‘—n = Pm—2ﬁn+3+(Pm—4 7Pm—3 7Pm—5)ﬁn+2+(Pm—3 7Pm—4)ﬁn+1 7ﬁnpm—3,
§m+n - Pm—2§n+3 + (Pm—4 - Pm—3 - Pm—5)§n+2 + (Pm—S - Pm—4)§n+1 - §an—3~

4 SIMSON’S FORMULAS

In this section, we present Simson’s formula for the dual hyperbolic generalized Pandita numbers . This is a special
case of [(Soykan, 2019c), Theorem 4.1].

Theorem 4.1. (Simpson’s formula for dual hyperbolic generalized Pandita numbers) For all integers n. we have,
Wote Woer Wooo Waor 0 Weo Wi Woo Wor | g o[, 4 W) (W — 27 +
Wn+1 Wn Wn—l Wn—2 Wl WO W_1 W_2
Wn Wn —1 Wn -2 Wn -3 WO W_ 1 W_ 2 W_ 3

I//‘70)(‘7[732 - WZZ +I7V\12 - Woz - Wﬂ?V\s - 2W1W3 + Wlﬁ/\Q + Woﬁ/\s + Q/W\OW2 - Wowl).
Proof. Using Theorem 2.1 it can be proved by using induction use [(Soykan, 2019c), Theorem 4.1]

From the Theorem 4.1 we get the following Corollary.

Corollary 4.2. For all integers n, the Simson’s formulas of dual hyperbolic Pandita numbers and dual hyperbolic
Pandita Lucas numbers are given as respectively

Puss Pua P P,
a) | Do P Pa Puca
Poy1 P, Pu..i Pua
Po  Puoi Paa Pas
Sus S S S
b) Snt2 Snt1 Sn S
Sn+1 Sn Sn—l Sn72
Su Suci Sucz Saos

5 LINEAR SUMS

=17 + 165 + 115¢ + 113je.

=452 4 6555 + 1125¢ — 126je¢.

In this section, we give the summation formulas of the dual hyperbolic generalized Pandita numbers with positive
and negatif subscripts.

Now, we present the summation formulas of the generalized Pandita numbers.

Theorem 5.1. For the generalized Pandita numbers, we have the following formulas:

@ Y Wi=—-(n+3)Wuis+ (n+4)Whio+ (n+4)W, + 3Ws — 4W, — 3Wh.
k=0

(b) > Wy = %(—3(71 + 2)Wapnga + (3n 4+ 8)Wany1 + 2Way + (3n + T)Wap_1 + TW3 — 8Wo — Wi — 6Wh).
k=0

(€) > Wary1 = 3(—(3n+4)Wany2 + (3n + 8)Wani1 + Wan + 3(n + 2)Wan_1 + 6Ws — 8Wa + W1 — TW)).
k=0
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Proof. For the proof, see [Soykan (2025), Theorem 3.12]. O

Theorem 5.2. For the dual hyperbolic Pandita numbers, we have the following formulas:

(a) kzijo Wi =—(n+3)Wnis+ (n+ ) Wara + (n+ )W, + 3Ws — AW, — 3W.

(b) éo Work = 1(=3(n + 2)Wansa + (31 + 8)Wan 1 + 2Wan + (30 + 7)Wan_1 + TWs — 8Wa — Wy — 6TW5).
(c) kz:jo Wakt1 = 2(=(3n 4+ ) Wapso + (30 + 8)Wont1 + Won + 3(n 4 2)Wan_1 + 6Ws — 8Wo + Wy — TWo).
Proof. Use Theorem 5.1 and the definition of Wn. O

As a special case of the theorem 5.2, we present the following Corollary.

Corollary 5.3. Forn > 0, dual hyperbolic Pandita numbers have the following properties:

@ > Pi=—-mn+3)Pis+(n+4)Puis+ (n+4)P, +1—5jc — 2.
k=0

(b) >° Py = %(_3(71 + 2)ﬁ2n+2 + (3n + 8)132n+1 + 2Py, + (3n+ 7)]32n—1 +3j+e—3je+4).
k=0

(€) 2 Prrtr = L(—(3n+4) Pongo + (3n 4 8) Pong1 + Pon +3(n + 2) Pan—1 + j — 3¢ — 8je + 3).
k=0

Corollary 5.4. Forn > 0, dual hyperbolic Pandita Lucas numbers have the following properties.

3
)

(@ > Sk =-(n+3)8uis+ (n+45 124 (n+4)5, — 8 — 9 — 10jc — 5.
k=0

3

(b) Y Sor = L(—3(n+2)S2nt2 + (3n + 8)Sznt1 + 2520 + (3n + 7)S2n_1 + —12j — 16c — 15j¢ — 7).
k=0

S

(c) Z Soks1 = L(—(3n +4)Sant2 + (3n + 8)S2nt1 + Szn + 3(n + 2)S2n_1 + —16j — 15¢ — 19je — 12).

Next, we give the ordinary generating functions of some special cases of dual hyperbolic generalized Pandita
numbers.

Theorem 5.5. The ordinary generating functions of the sequences /Wgn, Wzn.i,_l are given as follows:

ﬁ/\g (3&3 +3z% — x) + ﬁ/\o (2x2 + 2x — 1) — W1 (1’2 — xs) — 1//[/\3 (x3 + 23:2)
—zt—zd 4224221 '

R e n_W\o($3+2$2)—W3(I3+I2+I)—Wl(m3—2x+1)+W2(21‘3+$2)
(0) 320 Wanaa® = —at -3 42?422 -1 '

Proof. Similary, the proof can be constructed as in [Theorem 2.2].

@ Yo7, Wana" =

From the last Theorem we have the foIIowmg Corollary which glves sum formula of dual hyperbolic Pandita
numbers (Take W, = P, whit B, = j+2e+3je, P = 2j+3e+5je+1, P, = 3j+5e+8je+2, Py = 5j+8e+12je+3
)

Corollary 5.6. Forn > 0 dual hyperbolic Pandita numbers have the following properties.

_ (j +5e +4je) + (1 — e — je)z + (e + je)a® + (3je)a®
B 1—-2z+ 22 —23+a*

b) T B xn_(2j+25+5j5+4)+(572j76m74j6):c+(3j72€+2)x2+(2574j+8j5+7)m3
n=0 121t 1—2zx+2%— 23424

@ >0° Pona™

)
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6 MATRICES RELATED WITH DUAL HYPERBOLIC GENERALIZED PANDITA
NUMBERS

In this sectiion, using dual hyperbolic Pandita numbers, we give some matrices related to dual hyperbolic Pandita
numbers.

We define the square matrix A of order 4 as

2 -1 1 -1
1 0 0 O
A= 0 1 0 O
0 0 1 0
uch that detA = 1. Note that
Pn+1 _Pn"!_Pnfl_Pan Pn_Pnfl _Pn
Pn - n—1+Pn—2_Pn—3 Pn—l_Pn—Q —In-1

A" =
Pn—l - n—2+Pn—3 7Pn—4 Pn—2 7Pn—3 —In-2

Pn72 —Fn-3+ Pn74 - Pn75 Pn73 - P'n,74 —1In-3
for the proof see (Soykan, 2021e).

Then we give the following lemma.

Lemma 6.1. Forn > 0 the following identitiy is true:

—~ —~

Wits 2 -1 1 —1\" [ Ws
Weia | [ 1 0 0 0 W
Wair | [0 1 0 0 W,

A 0 0 1 0 W,

Proof. The identitiy(6.1) can be proved by mathematical induction on n. If n = 0 we obtain

—~ 0 —~

W 2 -1 1 -1 W
W | [ 1 0 0 0 Wa
wi, | o 1 0 o W
W, 0 0 1 0 W,

which is true. We assume that the identity given holds for n = k. Thus the following identitiy is true

E —~

WM—:& 2 -1 1 -1 W3
Were | |1 0 0 0 W
Wesr | | O 1 0 0 Wi
W, 0 0 1 0 Wo
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Forn =k + 1, we get

2 -1 1 —1\"' [ W 2 -1 1 -1 2 -1 1 -1 Ws
1 0 0 O Wy - 1 0 0 O 1 0 0 O Wa
0 1 0 0 Wi - 0 1 0 0 0 1 0 ©0 Wi
0 0 1 0 W, 0 0 1 0 0 0 1 0 W,
2 -1 1 -1 Wis
_ 1 0 0 O Wi
- 0 1 0 0 Wit
0 0 1 0 W,
= H/\k+3
ka
Wit
Consequently, by mathematical induction on n, the proof completed. O
We define
Ws Wo Wi W
No = | W2 W o W 6.1)
Wi Wo W_1 W_s
Wo W_1 W_a W_3
By = | W Wan W0 Wi 62
Wn+1 Wn anl Wn—2
Wn Wn—l Wn72 ani’)
Now, we have the following theorem with Ny; and Eg;
Theorem 6.2. Using Ny and Ey; , we get
A"Ng = Eg.
Proof. Note that we get
Pn+1 7Pn+Pn—1 7Pn—2 Pn 7Pn—1 7Pn :.WtS E2 El EO
A'N—  — P, —Po1+Po2—Po3 Poo1—Poa2 —Ppo We Wi Wo W
w Pn—l —FPn—2+ Pn—3 - Pn—4 Pn—2 - Pn—3 —In-2 W1 Wo Wfl W72
Pn72 —n-3+ Pn74 - Pn75 P’n73 - Pn74 —In-3 /'[/[70 /'[/[771 /'[/[772 /V[?73

a1l a1z a1z a4
a1 Q22 A23 0G24
a31 a32 a33 a34
a41 Q42 Q43 Q44
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where

az3
a24
asi
asz
ass
as4
asl
a42
a43

a44

W\l (Pn7Pn—1)7/W2(Pn7Pn—1+Pn—2)7WOPn+W3Pn+1 :W\n+37
WO (Pn— Pno1) — Wl (Pn, — Ph—1+ Prp—2) — PnI//.Vll + W2Pn+1 = Wn+27

W1 (Py— Pa_y) — Wo (P — Paci + Prs) — PaW_o + WiPai1 = Wnan,
W_o(Py—Po 1) —W_1(Py— Py + Pous) — PaW_g+ WoPai1 = W,

WsP, — W (Pp—1— Po—2+ Ph_3) + W (Pp—1— Pn—2) — WoP, 1 = /Wn+2,

W\an — /W—lpn—l — W1 (Pp—1— Pp—2+ Po_3) + /W (Pp—1— Pp—2) = W\n+1,

Wfl (Pr—1 — Pa—2) — W72Pn71 + Wlpn - Wo (Ph—1— Pp—2+ Pnp_3) = Wn,

W_, (Pp—1— Pn—2) — W_sPnu 1+ WoPn — W_, (Pp—1 — Pa—o+ Py—3) = /Wnﬂ,
/Wl (Prn—2 — Pp—3) — ‘//V\z (Pn—2 — Pn—g + Ph_4) — WOPn—Q + /W\SPn—l = /W\n+17

Wo (Pp—2 — Ph—3) — W (Pp—2 — Pp—g + Pn—4) — W_1Pn o+ WaPn_y = /Wn,

Wi (Ph—2 — Pn—3) — W_sPy_z — W\o (Pn—2 — Pn3+ Pn_4) + WiP,_1 = /Wn—ly
I//‘\LQ (Pn—2 — Po—3) — /W\73Pn72 — Wfl (Po—2 — Po—s+ Pu_a) + WOPnfl = Wn—m
Wi (Pn—3 — Pn—4) — Wo (P — Po_a+ Pros) — WoPu_3+ WaPp_o = W,

W\O (Pp—g — Pnp—4) — Wi (Pp—g — Pp—a+ Pn_5) — W—1Pn—3 + /W\2Pn—2 = /W\n—17
/Wfl (Pp—g — Pn—4) — W72P’n73 - /Wo (Pp—g — Po—a+ Ph_s5) + W1Pn72 = /anz,
W_, (Pp—g — Pp—a) — W—spn—s W, (Pp—g — Pp—a+ Po_s) + Wopn—z = /Wn—S-

2

Using the theorem (3.2) the proof is done. O

By taking W, =P, with Py, Py, P>, P5 in (6.1) and (6.2)
W, =S, with Sy, 51, S5, S5 in (6.1) and (6.2)

respectively, we get:

0

5] +8+12je +3 3j+5e+8je+2 25+3c+5je+1 j+ 2+ 3j¢e

37+5e+8je+2 2j+3+55e+1 i+ 2+ 3j¢e €+ 2je

2j +3e+5je+1 Jj+2e+ 3je €+ 2je —je ’
J+ 2+ 3j¢e €+ 2je —je -1

En+3 §n+2 Ari+1 Aﬁn

Puz Pu P Pu

Poyin P, Pui Pos |7

P, P, P,y P,

6+ 7+ 11je+5 55+ 6+ Tje+2 2j+5e+6je+2 2j+4+2e+5je+4
5j+6e+Tje+2  2j+5e+6je+2 2j+2e+5je+4  4j+2e+2je+1
27 4+ 5¢ + 6je + 2 2] +2e+5je+4 —45+2e+2je+1 jH+4e+2je—1 ’
2+ 2 +5je+4 —4j+2+2je+1  j4de+2je—1  e—j+4je+4

~ ~ ~

Sn+3 Sn+2 S

)

Sn+s S n+l S

Sn+2 Sn+1 Sn Sn— 1

§n+1 Sn §n—1 §n—2
So Sut Suz Suos
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From Theorem (6.2), we can write the following corollary.
Corollary 6.3. The following identities are hold:

a) Aang = Elg.
b) A"Ng = Eg.

7 CONCLUSIONS

Recurrence relations define sequences where each term depends on previous ones. These sequences such as
Fibonacci, Pell, Jacobsthal, Tribonacci, Padovan, Narayana’'s Cows, Leonardo, Tetranacci, and Pentanacci arise
across fields including engineering, biology, mathematics, and physics. Below, we present their definitions with
initial conditions using A,, notation and outline their real-world relevance.

» Fibonacci Sequence:

Fn: n71+Fn72, F():O, F1:1

* Pell Sequence:

P,=2P, 1+P, 2, Ph=0 P =1

» Jacobsthal Sequence:

Jn = Jn—l + 2Jn—2» JO = 07 Al =1

» Tribonacci Sequence:

Th=Th-1+Th2+ Tn737 To = 07 T = 17 T =1

» Padovan Sequence:

Pn: n72+Pn737 PO:P1:P2:1

+ Narayana’s Cows Sequence:

Np=Nn_1+Np_3, No=Ni=Nx=1

» Leonardo Sequence:

Ly,=Ln1+Lno+1 Lo=1 L1 =1

» Tetranacci Sequence:

My =Mp1+Myo+My_3+ My, Mo=M =M=0, M;=1

» Pentanacci Sequence:

Po=P,1+Py2+Py3+Pru+Prs5, Po=Pi=FPo=P;=0, P,=1
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These sequences demonstrate how mathematical
recursions extend into the fabric of our world whether
designing structures, analyzing algorithms, modeling
nature, or probing the quantum realm. Their recursive
beauty continues to inspire both theoretical and
practical exploration.

Next, we explore several real-world applications of
recurrence relations across disciplines.

» Engineering
— Fibonacci: Models recursive filters in

control systems and signal processing.

— Padovan and Perrin: Guide architectural
proportions using the plastic number.

— Jacobsthal: Applied in digital circuits for
counting and encoding.

« Science
— Tribonacci and Tetranacci: Simulate
biological  systems  with  delayed

reproduction.

— Leonardo: Reflect branching in plants and

trees.

— Fibonacci and Narayana’s Cows:
Describe phyllotaxis and seed
arrangement in botany.

* Mathematics

— Recurrence Relations: Analyze
algorithms like mergesort and quicksort.

— Pell: Solve Diophantine equations and

approximate square roots with continued
fractions.

— Jacobsthal and Padovan: Used in tiling
and combinatorics problems.

» Physics
— Fibonacci and Tribonacci: Appear in

wave interference and quantum systems.

— Pentanacci: Used in recursive models of
particle interactions and fractals.

— Padovan: Linked to equilibrium modeling
via the plastic constant.

In this study, we extend the classical framework to
fourth-order recurrence systems by introducing the
dual hyperbolic Pandita numbers, along with two
distinguished subclasses. For these novel sequences,
we derive Binet-type formulas, ordinary and exponential
generating functions, and generalized Simson-type
identities. Our analysis also encompasses closed-form
summation formulas, algebraic properties, recurrence
behaviors, and matrix-based representations.

Recognizing the theoretical depth and real-world
utility of recurrence-based sequences, we first
revisit the applications of second-order sequences
to establish context. We then position our fourth-
order generalizations as a natural progression within
this broader mathematical landscape—offering new
insights and powerful tools for modeling, analysis, and
optimization in both pure and applied settings.

» For the applications of Gaussian Fibonacci and
Gaussian Lucas numbers to Pauli Fibonacci and
Pauli Lucas quaternions, see (Azak, 2022).

» For the application of Pell Numbers to the
solutions of three-dimensional difference
equation systems, see (Bilylk and Taskara,
2022).

» For the application of Jacobsthal numbers to
special matrices, see (Vasanthi and Sivakumar,
2022).

» For the application of generalized k-order
Fibonacci numbers to hybrid quaternions, see
(Gdl, 2022).

» For the applications of Fibonacci and Lucas
numbers to Split Complex Bi-Periodic numbers,
see (Yilmaz, 2022b).

+ For the applications of generalized bivariate
Fibonacci and Lucas polynomials to matrix
polynomials, see (Yilmaz, 2022a).

» For the applications of generalized Fibonacci
numbers to binomial sums, see (Ulutas and Toy,
2022).

» For the application of generalized Jacobsthal
numbers to hyperbolic numbers, see (Soykan
and Tasdemir, 2022).

» For the application of generalized Fibonacci
numbers to dual hyperbolic numbers, see
(Soykan, 2021d).

» For the application of Laplace transform and
various matrix operations to the characteristic
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polynomial of the Fibonacci numbers, see
(Deveci and Shannon, 2022).

For the application of Generalized Fibonacci
Matrices to Cryptography, see (Prasad and
Mahato, 2022).

For the application of higher order Jacobsthal
numbers to quaternions, see (Ozkan and Uysal,
2023).

For the application of Fibonacci and Lucas
Identities to Toeplitz-Hessenberg matrices, see
(Goy and Shattuck, 2019).

For the applications of Fibonacci numbers to
lacunary statistical convergence, see (Bilgin,
2021).

For the applications of Fibonacci numbers to
lacunary statistical convergence in intuitionistic
fuzzy normed linear spaces, see (Kisi and
Tuzcuoglu, 2020).

For the applications of Fibonacci numbers to
ideal convergence on intuitionistic fuzzy normed
linear spaces, see (Kisi and Debnathb, 2022).

For the applications of k-Fibonacci and k—Lucas
numbers to spinors, see (Kumari et al., 2023).

For the application of dual-generalized complex
Fibonacci and Lucas numbers to Quaternions,
see (Sentlrk et al., 2022).

For the application of special cases of Horadam
numbers to Neutrosophic analysis see (Gokbas
et al., 2023).

For the application of Hyperbolic Fibonacci
numbers to Quaternions, see (Dasdemir, 2021).

For the application of Pell numbers to Gaussian
Hyperbolic numbers, see (Gokbas, 2022).

» For the application of Pell-Padovan numbers to
groups, see (Deveci and Shannon, 2017).

» For the application of adjusted Jacobsthal-
Padovan numbers to the exact solutions of some
difference equations, see (Gdcen, 2022).

» For the application of Gaussian Tribonacci
numbers to various graphs, see (Sunitha and
Sheriba, 2022).

» For the application of third-order Jacobsthal
numbers to hyperbolic numbers, see (Dikmen
and Altinsoy, 2022). For the application of
Narayan numbers to finite groups see (Kuloglu
et al., 2022).

» For the application of generalized third-order
Jacobsthal sequence to binomial transform, see
(Soykan et al., 2022a).

» For the application of generalized Generalized
Padovan numbers to Binomial Transform, see
(Soykan et al., 2022b).

» For the application of generalized Tribonacci
numbers to Gaussian numbers, see (Soykan
et al., 2018).

» For the application of generalized Tribonacci
numbers to Sedenions, see (Soykan et al.,
2020a).

« For the application of Tribonacci and Tribonacci-
Lucas numbers to matrices, see (Soykan, 2020).

« For the application of generalized Tribonacci
numbers to circulant matrix, see (Soykan,
2021b).

« For the application of Tribonacci and Tribonacci-
Lucas numbers to hybrinomials, see (Tasyurdu
and Polat, 2021).

In the following, we explore several applications
of third-order recurrence sequences across various - For the application of hyperbolic Leonardo and
mathematical and applied contexts. hyperbolic Francois numbers to quaternions, see

» For the applications of third order Jacobsthal (Digkaya et al., 2023).

numbers and Tribonacci numbers to quaternions,
see (Cerda-Morales, 2017a) and (Cerda-
Morales, 2017b), respectively.

In the following lists, we outline several applications of
fourth-order recurrence sequences across theoretical
and applied domains.
» For the application of Tribonacci numbers to
special matrices, see (Yimaz and Taskara, » For the application of Tetranacci and Tetranacci-
2014). Lucas numbers to quaternions, see (Soykan,

» For the applications of Padovan numbers and 2019d).
Tribonacci numbers to coding theory, see » For the application of generalized Tetranacci

(Shtayat and Al-Kateeb, 2019) and (Basu and
Das, 2014), respectively.

numbers to Gaussian numbers, see (Soykan,
2019a).
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 For the application of Tetranacci and Tetranacci-
Lucas numbers to matrices, see (Soykan,
2019b).

» For the application of generalized Tetranacci
numbers to binomial transform, see (Soykan,
2021c¢).

We now explore several applications of fifth-order
sequences.

» For the application of Pentanacci numbers to
matrices, see (Sivakumar and James, 2022).

» For the application of generalized Pentanacci
numbers to quaternions, see (Soykan et al.,
2020Db).

» For the application of generalized Pentanacci
numbers to binomial transform, see (Soykan,
2021a).
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