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ABSTRACT 
 

This paper reviews the advancements and challenges in Unmanned Ground Vehicles (UGVs), 
tracing their evolution from early research to modern applications. We synthesize recent progress in 
mobility platforms, including wheeled, tracked, and legged systems, and their use in military, 
agricultural, and disaster response missions. The review highlights key technological enablers for 
UGV autonomy, such as advanced perception systems that fuse data from LiDAR, cameras, and 
radar. We also examine the role of artificial intelligence, particularly deep learning for perception 
and reinforcement learning for navigation. Furthermore, the paper addresses the increasing 
importance of modularity, interoperability standards like JAUS, and the use of UGV swarms. 
Despite this progress, significant challenges persist, including reliable off-road autonomy, 
localization in GPS-denied environments, and ensuring cybersecurity. The paper concludes by 
outlining critical areas for future research to achieve more resilient, intelligent, and collaborative 
UGV systems. 
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1. INTRODUCTION 
 
Unmanned Ground Vehicles (UGVs) have 
undergone significant evolution over the past few 
decades, transitioning from rudimentary tele-
operated systems to highly autonomous 
platforms capable of performing complex         
tasks across a variety of domains. Early 
prototypes like SHAKEY (1966) and the 
Autonomous Land Vehicle (ALV) set foundational 
concepts for robot autonomy and mobility 
(Nilsson 1969, Thorpe, 1991). Over time,        
UGVs have expanded their operational scope to 
sectors including military reconnaissance and 
logistics, agricultural automation, disaster 
response, infrastructure inspection, and search-
and-rescue missions (Niu and Chen, 2023, 
Mondal et al., 2024, Liu, 2022, Criollo et al., 
2024). 
 
This review aims to systematically map the 
technological progress and emerging trends         
in UGVs by analysing 50 significant peer-
reviewed papers published between 2007 and 
2025. Key areas of focus include platform design 
and mobility, sensor technologies and 
perception, autonomy and intelligence, 
interoperability standards, and real-world 
applications. We also identify current challenges 
and potential future directions to guide 
researchers and practitioners in this rapidly 
evolving field. 
 

2. PLATFORM DESIGN & MOBILITY 
 

2.1 Locomotion Modes 
 
Unmanned Ground Vehicles employ various 
locomotion mechanisms to navigate diverse and 
often challenging terrains. The most common 
configurations are wheeled, tracked, and legged 
platforms, each with its unique advantages and 
limitations. 
 

• Wheeled UGVs are typically favoured for 
their high speed, energy efficiency, and 
mechanical simplicity. They excel on flat or 
moderately rough terrain but face 
limitations on extremely uneven or soft 
ground (Ni et al., 2021, Ni et al., 2018). 

• Tracked UGVs provide enhanced traction 
and obstacle surmounting ability. For 
instance, the THeMIS platform 

demonstrates capabilities including slope 
navigation up to 60%, side slopes of 30%, 
overcoming obstacles up to 0.9 meters, 
and speeds up to 20 km/h, making them 
suitable for off-road and military missions 
(Švásta and Furch 2023, Zhou et al., 
2020). 

• Legged UGVs, although still primarily in 
research phases, mimic animal locomotion 
to traverse highly uneven and complex 
terrains inaccessible to wheeled or  
tracked vehicles. They offer potential 
advantages in mobility and adaptability but 
require sophisticated control algorithms 
and pose mechanical challenges (McGhee 
and Iswandhi 2007, Mohamed et al., 
2018). 

 

2.2 Modular Architectures 
 
Modularity has become a prominent trend in 
UGV design, emphasizing flexibility and rapid 
reconfiguration. Modular systems enable the 
quick swapping of payloads and sensors to tailor 
the vehicle for specific missions. In agriculture, 
for example, platforms often consist of 
commercial wheeled bases with plug-and-play 
modules for tasks such as spraying, monitoring, 
and harvesting (Quaglia et al., 2020, Gadekar et 
al., 2023). 
 
Standardized mechanical and electrical 
interfaces, alongside software-defined controls, 
allow autonomous detection and configuration        
of payloads, reducing setup time and       
improving operational efficiency (Mangas           
et al., 2022, Pradhan et al., 2017, Patel et al., 
2017). 
 

2.3 Power & Propulsion 
 
Powertrain selection is critical in balancing 
endurance, stealth, noise, and energy      
efficiency. Hybrid diesel-electric powertrains, 
such as those employed by THeMIS, provide 
extended operational time (~15 hours in hybrid 
mode) while allowing purely electric silent 
operation for shorter durations (~1.5 hours) 
(Angelopoulos 2008, Zhang 2016). Pure electric 
UGVs offer reduced acoustic and thermal 
signatures but face limitations in energy      
density, impacting mission duration and payload 
capacity.  



 
 
 
 

Abishek et al.; Arch. Curr. Res. Int., vol. 25, no. 8, pp. 619-634, 2025; Article no.ACRI.142352 
 
 

 
621 

 

 
 

Fig. 1. Schematic of a UAV–UGV collaborative application. Dashed lines represent real-time 
data exchange via the proposed dual-channel architecture 
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Fig. 2. Agricultural UGV Payload Swap: Demonstrates modular payload exchange on a 
wheeled base for crop spraying, soil sampling, and plant health monitoring 

 
Table 1. Comparison of UGV Powertrain Types 

 

Powertrain Type Endurance Noise Complexity Applications 

Battery Electric 1-3 hours Low Low Indoor, short missions 
Hybrid Diesel-Electric 10-20 hours Medium Medium Military, long missions 
Fuel Cell 20 + hours Low High Experimental, remote ops 

 

3. SENSOR SUITE & PERCEPTION 
 

3.1 Sensor Technologies 
 
UGVs rely on a diverse array of sensors to 
perceive and understand their environment, 
enabling navigation, obstacle avoidance, and 
mission-specific tasks. Commonly integrated 
sensors include: 
 

• LiDAR (Light Detection and Ranging): 
Provides high-resolution 3D point clouds 
for environment mapping and obstacle 
detection. Its precision in measuring 
distances makes it crucial for 
Simultaneous Localization and Mapping 
(SLAM) and traversability analysis (Liu et 
al., 2015, Maset et al., 2022). 

• Cameras: RGB and infrared cameras 
deliver visual data for object recognition, 
terrain classification, and situational 
awareness. Stereo vision cameras 
enhance depth perception (Brophy et al., 
2023). 

• Radar: Particularly effective in adverse 
weather and occluded environments due to 
its long-range and all-weather capabilities, 
radar complements LiDAR, which can be 
hindered by fog, dust, or rain (Peng et al., 
2025, Qian et al., 2025). 

• Ultrasound: Useful for close-range 
obstacle detection and collision avoidance, 
especially in constrained environments 
(Yépez-Ponce et al., 2025). 

• Inertial Measurement Units (IMUs): 
Provide orientation and acceleration data, 
critical for dead reckoning and stabilizing 
motion estimation (Yi et al., 2025). 

• GPS/RTK: Global Positioning System, 
augmented with Real-Time Kinematic 
positioning, enables precise global 
localization, though it can be unreliable or 
unavailable in GPS-denied environments 
such as indoors or urban canyons 
(McElroy et al., 2025). 

• Radio-based Ranging (RFID, UWB): 
Emerging techniques use radio signals for 
localization where GPS signals are weak 
or denied (Kramarić et al., 2025). 

 

3.2 Radar vs LiDAR 
 
The choice between radar and LiDAR involves 
trade-offs: 
 

• Radar systems are robust in poor 
visibility and can penetrate obstacles 
such as foliage and dust, making them 
suitable for outdoor and battlefield 
conditions (Garcia-Atutxa et al., 2025). 
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• LiDAR offers finer spatial resolution, 
beneficial for detailed mapping and 
object recognition in structured or semi-
structured environments but is more 
sensitive to environmental conditions 
(Zheng et al., 2025). 
Hybrid systems employing sensor fusion 
combine these strengths to improve 
robustness and reliability. 

 

3.3 Traversability Analysis 

 
Traversability estimation, essential for path 
planning and safe navigation, leverages 
multisensor data. Techniques combine 
appearance features from cameras, geometric 
data from LiDAR, and radar returns to classify 
terrain types such as rock, soil, vegetation, or 

water (Bekhti et al., 2014). Machine learning 
algorithms, particularly convolutional neural 
networks (CNNs), enhance terrain classification 
accuracy and adapt to new environments (Li et 
al., 2025). 
 

3.4 Localization Advances 
 
Localization technologies continue to evolve       
to address GPS-denied scenarios. Radio-
frequency (RF)-based localization using ultra-
wideband (UWB) or 5G cellular networks        
offers promising alternatives for precise 
positioning (Zhou et al., 2024). Combining       
these with visual-inertial odometry and        
SLAM techniques enables resilient navigation      
in complex environments (Servières et al.,       
2021). 

 

 
 

Fig. 3. Sensor fusion pipeline: Depicts integration of LiDAR, radar, camera, and IMU data 
streams into a unified environmental map used for navigation and obstacle avoidance 

 
Table 2. Sensor Types, Advantages and Limitations for UGVs 

 

Sensor Type Advantages Limitations Typical Use Cases 

LiDAR High spatial resolution Costly, weather-sensitive Terrain mapping, obstacle 
avoidance 

Radar All-weather operation Lower resolution Adverse weather, occlusions 
Cameras Rich visual data Lighting/weather sensitive Object classification, scene 

understanding 
Ultrasound Low-cost, short-range Limited range, noise-

sensitive 
Indoor obstacle avoidance 

IMU Inertial navigation Drift over time Pose estimation, stabilization 
GPS/RTK Global absolute 

positioning 
Unreliable indoors/urban 
canyons 

Outdoor navigation 

RF-based Indoor/GPS-denied 
localization 

Lower accuracy, 
infrastructure needed 

Indoor tracking 
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4. AUTONOMY AND INTELLIGENCE 
 

4.1 Perception and Planning 
 

The core of UGV autonomy lies in its ability to 
perceive the environment and plan safe, efficient 
paths. Advanced perception techniques leverage 
deep learning models such as convolutional 
neural networks (CNNs) and recurrent neural 
networks (RNNs) to enhance object detection, 
scene understanding, and semantic 
segmentation from sensor data (Juyal et al., 
2021, Chen et al., 2023). These models improve 
the accuracy and robustness of simultaneous 
localization and mapping (SLAM), enabling 
UGVs to build reliable maps in complex and 
dynamic environments (Wang et al., 2024). 
 

Path planning algorithms integrate terrain 
traversability data with mission objectives. 
Classical approaches like A* and D* have 
evolved to incorporate machine learning and 
reinforcement learning (RL), allowing UGVs to 
adapt their navigation strategies dynamically 
based on learned experience (Wang et al., 
2019). Recent developments include the use of 
deep reinforcement learning (DRL) to handle 
complex decision-making under uncertainty (Zhu 
and Zhang 2021). 
 

4.2 Reinforcement Learning & 
Cooperative Control 

 

Reinforcement learning, particularly DRL, has 
gained traction for enabling UGVs to learn 
optimal behaviours through trial-and-error 
interaction with the environment. DRL enables 
adaptive control policies for navigation, obstacle 
avoidance, and energy management (Zhang et 

al., 2020). For example, in multi-agent systems, 
DRL facilitates cooperative behavior between 
UAVs and UGVs for coordinated missions such 
as disaster response, where UGVs may 
autonomously recharge drones or relay 
communications (Munasinghe et al., 2024, 
Zhong et al., 2024). 
 

4.3 Swarm Intelligence 
 

Swarm intelligence frameworks leverage 
decentralized AI models to coordinate multiple 
UGVs (and UAVs) operating as a cohesive unit. 
This approach increases system robustness, 
scalability, and flexibility. Swarm algorithms 
inspired by natural systems—such as ant colony 
optimization and particle swarm optimization—
enable efficient task allocation, formation control, 
and distributed sensing (Khaldi and Cherif 2015; 
Ronchieri and Innocenti, 2007). Modular payload 
control enhances swarm adaptability by allowing 
individual units to switch roles dynamically 
(Costello et al., 2016). 
 

4.4 On-Board Computation 
 

Advances in embedded computing platforms 
have been critical in realizing real-time 
autonomous functions onboard UGVs. High-
performance System-on-Chips (SoCs) such as 
NVIDIA Jetson Nano and Orin, Google Coral 
TPUs, and other ARM-based AI accelerators 
provide the computational horsepower required 
for running deep neural networks and SLAM 
algorithms in real time while respecting power 
and thermal constraints (Satyakumar et al., 2025, 
Sacks et al., 2018). This facilitates deployment in 
field conditions without relying extensively on 
remote processing. 

 

 
 

Fig. 4. Communication Framework for Cooperative Multi-UAV and Multi-UGV Systems 
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5. INTEROPERABILITY AND 
STANDARDIZATION 

 

5.1 UGV Interoperability Profiles (IOPs) & 
DoD Standards 

 
Interoperability is critical for enabling diverse 
UGV systems, sensors, and payloads to work 
together seamlessly, especially in military and 
multi-vendor environments. The U.S. Department 
of Defense (DoD) has promoted the adoption of 
interoperability profiles based on the Joint 
Architecture for Unmanned Systems (JAUS) 
standard (Rowe and Wagner, 2008). JAUS 
defines messaging protocols and service 
interfaces that facilitate modular system 
integration, command and control, and data 
sharing across heterogeneous platforms 
(English, 2009). 
 
Implementing JAUS-based interoperability 
profiles allows different UGVs and their 
subsystems to be integrated into larger 
networked systems, enhancing mission flexibility 
and reducing development costs. It supports 
plug-and-play capabilities, enabling rapid 
adaptation to mission requirements by swapping 
payloads or sensors with minimal software 
reconfiguration (Smuda, 2005). 
 

5.2 European Initiatives: iMUGS and 
Standardization Efforts 

 
In Europe, the Integrated Modular Unmanned 
Ground System (iMUGS) project represents a 
concerted effort to standardize UGV platforms 
across member nations. Based on the versatile 
THeMIS platform, iMUGS aims to develop 
interoperable hardware and software 
frameworks, ensuring compatibility and 
operational coherence across different national 
forces and industrial suppliers (Akimoto and 
Ogata, 2012). 
 
The iMUGS initiative emphasizes open 
architectures, standardized interfaces 
(mechanical, electrical, and software), and 
common control frameworks. These standards 
are vital for enabling cross-border cooperation, 
reducing vendor lock-in, and fostering a 
competitive market for modular UGV 
technologies (Yoon et al., 2019). Additionally, 
ongoing collaboration with NATO standardization 
groups furthers harmonization in allied 
operations (Al Shibli 2015). 
 

5.3 Challenges in Standardization 
 
Despite these advances, achieving universal 
interoperability remains challenging due to 
proprietary systems, varying hardware 
constraints, and evolving mission requirements. 
Lack of widely adopted universal protocols 
hinders seamless plug-and-play across 
manufacturers. Moreover, cybersecurity and 
secure communications protocols are        
essential considerations in standard 
development to protect against threats 
(Mathiassen et al., 2021). 
 
To address these issues, current research 
advocates for layered interoperability approaches 
combining open standards with adaptable 
middleware and common data models. 
Enhanced certification processes and industry-
government partnerships are also critical for 
accelerating adoption (Cuadros Zegarra et al., 
2024). 

 
6. APPLICATIONS AND DEPLOYMENT 
 

6.1 Military Operations 
 
Unmanned Ground Vehicles have become 
indispensable in modern military operations, 
performing roles ranging from intelligence, 
surveillance, and reconnaissance (ISR) to 
logistics support and armed engagement. 
Platforms like the THeMIS and Type-X         
UGVs have been deployed in conflict zones  
such as Ukraine and NATO exercises, 
demonstrating capabilities in navigating 
hazardous environments while carrying        
sensor payloads or weapon systems       
(Michalski and Nowakowski, 2020, Jurado         
et al., 2025). The integration of autonomous 
navigation with rugged mobility allows          
these UGVs to perform patrols, convoy         
escort, casualty evacuation, and supply 
transport, reducing risk to personnel (Hussain et 
al., 2005). 
 
Additionally, armed UGV variants equipped     
with remotely operated weapon stations    
provide force multiplication and precise firepower 
while maintaining operator safety. Military 
deployments have emphasized modular 
payloads to enable rapid mission adaptation      
and cooperation with aerial drones for           
multi-domain operations (Moseley et al.,       
2009). 
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6.2 Agriculture 
 
Agricultural UGVs leverage autonomy and AI-
powered sensing to enhance crop monitoring, 
soil analysis, and precision spraying. Systems 
incorporate high-resolution multispectral 
cameras, LiDAR, and soil sensors to collect 
detailed plant health data, enabling targeted 
interventions that improve yield and reduce 
resource usage (Sahu 2024, Vlachopoulos et al., 
2021). The use of GPUs and TPUs onboard 
allows real-time image processing and anomaly 
detection, critical for early disease identification 
and nutrient management (Katikaridis et al., 
2022). 
 
Modular designs permit swapping tools such as 
seed planters, weeders, and harvesters, 
supporting diverse agricultural tasks with a  
single base platform. These UGVs contribute         
to sustainable farming practices by       
minimizing chemical use and labour costs (Xu et 
al., 2022). 
 

6.3 Construction and Infrastructure 
Inspection 

 
Autonomous UGVs equipped with robotic arms 
and advanced sensors have been deployed in 
construction and infrastructure inspection to 
enhance safety and efficiency. These UGVs can 
perform obstacle removal, material transport, and 
site surveying in constrained environments that 
are unsafe or inaccessible for humans 

(Czarnowski et al., 2018). Equipped with LiDAR, 
cameras, and radar, they facilitate detailed 
structural inspections, detecting cracks, 
corrosion, and deformation with high precision 
(Xiao et al., 2023). 
 
Furthermore, UGVs assist in tunnel inspection, 
pipeline monitoring, and bridge assessment, 
providing continuous and reliable data to support 
maintenance and prevent catastrophic failures 
(Zhang et al., 2018). 
 

6.4 Disaster Response and Search & 
Rescue 

 
UGVs working in tandem with UAVs have 
transformed disaster response by enabling rapid 
area coverage, persistent monitoring, and 
coordinated task sharing. These systems can 
navigate debris, collapsed structures, and 
hazardous environments to locate survivors, 
deliver supplies, and map disaster zones 
(Baumgärtner et al., 2017). Real-time data 
streaming from onboard sensors supports 
situational awareness for rescue teams 
(Messaoudi et al., 2024). 
 
Hybrid UAV-UGV teams optimize coverage: 
UAVs provide aerial overviews while UGVs 
conduct ground-level searches and operate 
heavy payloads. Autonomous coordination 
algorithms ensure efficient mission execution 
with minimal human intervention (Arbanas et al., 
2018). 

 

 
 
Fig. 5. Disaster Response UAV-UGV Coordination: Highlights collaborative search and rescue 

operations using aerial and ground robotic teams 
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Table 3. Representative UGV Applications 
 

Application 
Domain 

Key UGV Examples Primary Payloads & 
Sensors 

Deployment 
Challenges 

Military THeMIS, Type-X EO/IR cameras, radar, 
manipulator arms 

Rugged terrain, 
security 

Agriculture Small Robot Company 
UGVs 

Hyperspectral cameras, 
RTK-GPS 

Field navigation, 
weather 

Construction & 
Inspection 

Clear path Husky, 
Boston Dynamics Spot 

LiDAR, robotic arms, 
ultrasonic sensors 

Confined spaces, real-
time mapping 

Disaster 
Response & SAR 

PackBot, ANYmal Thermal, gas sensors, 
cameras 

Complex terrain, long 
ops 

Urban Delivery Starship Technologies 
UGV 

Cameras, GPS, obstacle 
avoidance 

Urban navigation, 
pedestrian safety 

 

7. CHALLENGES AND RESEARCH GAPS 
 

7.1 Sensor Fusion Complexity 
 
One of the most significant challenges in        
UGV development is the integration of 
heterogeneous sensor data to create accurate 
environmental models for navigation and 
decision-making. UGVs typically combine LiDAR, 
radar, cameras, ultrasonic sensors, inertial 
measurement units (IMUs), and GPS. Each 
sensor has distinct strengths and weaknesses: 
LiDAR provides high-resolution 3D spatial data, 
radar excels in adverse weather, and cameras 
deliver rich visual context (Walker and Harris 
1993). 
 
However, fusing these disparate data streams 
requires sophisticated synchronization, 
calibration, and filtering techniques to mitigate 
noise, latency, and sensor drift. Real-time fusion 
algorithms, often based on Bayesian filtering or 
deep learning, are computationally intensive and 
must balance accuracy with onboard processing 
constraints (Liu et al., 2018). Research is 
ongoing into adaptive sensor fusion frameworks 
that dynamically weight sensor inputs depending 
on environmental conditions (Malawade et al., 
2022). 
 

7.2 Robust Off-road Autonomy 
 
Operating in unstructured, off-road environments 
presents a core mobility and perception 
challenge. Terrains featuring soft soil,  
vegetation, uneven surfaces, rocks, and       
water require UGVs to possess advanced 
traversability analysis and adaptive locomotion 
(Naranjo et al., 2016). While wheeled and 

tracked platforms perform well on moderate 
terrain, legged robots offer potential for extreme 
environments but remain less mature (Cheng et 
al., 2024). 
 
Durability and reliability are paramount;  
exposure to dust, moisture, and mechanical 
stress demands rugged hardware and fault-
tolerant control systems. Terrain classification 
using sensor fusion combined with machine 
learning has improved navigation, but 
unexpected obstacles and dynamic        
conditions still challenge autonomy (Xiaotian et 
al., 2019). 

 
7.3 Scalable AI in Constrained Hardware 
 
Real-time perception, planning, and control 
require running heavy AI workloads on        
limited onboard computer resources. Balancing 
the demand for sophisticated neural        
networks with energy consumption and           
heat dissipation constraints is a continuing 
challenge (Ramasubramanian et al., 2022). 
Current solutions include edge AI       
accelerators like NVIDIA Jetson Orin and  
Google Coral TPUs, but optimizing             
models for embedded deployment without        
losing accuracy is non-trivial (Akkad et al.,  
2023). 
 
Furthermore, intermittent communication and the 
need for autonomy in GPS-denied or network-
denied environments compel UGVs to perform AI 
inference locally, increasing computational 
requirements. Research into lightweight       
models, model pruning, and quantization is 
critical for future UGV intelligence (Sanida et al., 
2022). 
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Table 4. Key challenges and research directions 
 

Challenge Description Research Directions Impact on UGV 
Deployment 

Sensor Fusion 
Complexity 

Integrating multi-
sensor data in real-
time 

Probabilistic fusion, deep 
sensor fusion 

Improves perception 
reliability 

Off-road 
Autonomy 

Navigation in 
unstructured, dynamic 
terrains 

Terrain-adaptive planning, 
rugged hardware 

Expands operational 
environments 

Scalable AI Running efficient AI on 
power-limited hardware 

Model compression, edge AI 
hardware 

Extends mission 
endurance 

Interoperability Lack of universal 
standards and APIs 

Development/adoption of 
JAUS, iMUGS 

Enables modular, 
multi-vendor systems 

Ethical & 
Regulatory 

Legal, privacy, and 
societal concerns 

Policy development, ethical 
AI 

Facilitates safe 
public adoption 

 

7.4 Interoperability Barriers 
 

Despite progress in standardization, lack of 
universally accepted protocols and middleware 
continues to impede seamless interoperability. 
Diverse proprietary systems often require custom 
adapters, increasing integration costs and 
complexity. Cybersecurity concerns further 
complicate protocol openness, as secure 
communications must be ensured across 
networks (Shafik et al., 2023). 
 

Efforts to develop open-source frameworks and 
layered middleware architectures aim to address 
these barriers, but industry-wide adoption 
remains limited. Bridging this gap is essential for 
collaborative missions involving heterogeneous 
robotic teams (Mohamed et al., 2008). 
 

8. CONCLUSION 
 

Unmanned Ground Vehicles (UGVs) have 
undergone remarkable evolution from 
rudimentary tele-operated platforms to 
sophisticated autonomous systems capable of 
complex missions across military, agricultural, 
industrial, and disaster-response domains. This 
review has synthesized advances in platform 
design, sensor integration, autonomy algorithms, 
interoperability frameworks, and diverse 
applications, highlighting key trends and ongoing 
challenges. 
 

Sensor fusion combining LiDAR, radar, cameras, 
and IMUs has significantly improved 
environmental perception and terrain 
traversability. Deep learning models, 
reinforcement learning, and swarm intelligence 
are enabling greater autonomy, cooperative 
multi-robot operations, and adaptive mission 
planning. Modular architectures and plug-and-

play payload systems enhance operational 
flexibility, while emerging edge AI hardware 
facilitates onboard processing despite 
constrained power and compute resources. 
 

However, significant challenges remain, including 
the complexity of real-time heterogeneous 
sensor fusion, achieving reliable off-road mobility, 
balancing scalable AI workloads with hardware 
constraints, and overcoming interoperability 
barriers due to fragmented standards. Research 
continues to address these gaps through novel 
algorithms, resilient localization in GPS-denied 
environments, and evolving standardization 
efforts. 
 

Looking forward, the integration of AI-enabled 
modularity, decentralized swarm systems, 
advanced edge AI chips, and enhanced 
interoperability protocols will drive UGV 
capabilities to new levels. These developments 
promise not only increased operational 
effectiveness but also broader adoption across 
commercial and public safety sectors. 
 

In summary, while hurdles persist, the 
convergence of sensor technology, artificial 
intelligence, and system architecture innovations 
positions UGVs as a pivotal technology in the 
landscape of autonomous robotics. Continued 
multidisciplinary research and collaboration will 
be essential to fully realize their transformative 
potential. 
 

9. FUTURE TRENDS AND 
RECOMMENDATIONS 

 

9.1 AI-Enabled Modularity 
 

Future UGVs will increasingly adopt modular 
architectures enhanced by AI for automatic 
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payload recognition, configuration, and adaptive 
control. This plug-and-play approach will allow 
rapid reconfiguration of sensors, manipulators, or 
mission-specific tools without extensive manual 
recalibration, streamlining deployment in diverse 
operational scenarios (Pandy et al., 2025). AI 
algorithms will dynamically optimize payload 
parameters, communication links, and power 
management based on real-time mission needs, 
enhancing versatility and responsiveness (Ni et 
al., 2021). 
 

9.2 Swarm Systems & Decentralized 
Control 

 

Swarm robotics, involving coordinated groups of 
UAVs and UGVs, represents a transformative 
trend especially for defense, disaster 
management, and large-area monitoring 
(Schranz et al., 2020). Decentralized AI 
algorithms enable robust, scalable collaboration 
without reliance on centralized control, improving 
fault tolerance and adaptability. Future       
research focuses on swarm behavior models that 
allow UGVs to autonomously allocate tasks, 
share sensory data, and adjust formation        
based on environmental cues (Elkilany et al., 
2021). 
 
The synergy between aerial and ground robots 
will expand mission capabilities, for example, 
with UGVs recharging UAVs or providing mobile 
command centers during extended operations 
(Arbanas et al., 2018). 
 

9.3 Edge AI & Low-Power High-
Performance Chips 

 
Advances in edge AI hardware will empower 
UGVs with real-time perception and decision-
making capabilities while minimizing energy 
consumption. Emerging ARM-based high-        
TOPS processors like Qualcomm Snapdragon     
X Elite, alongside Intel and AMD’s embedded 
offerings, promise powerful yet energy-       
efficient platforms tailored for embedded AI 
workloads (Ramasubramanian et al., 2022). 
Combined with techniques such as model 
pruning and quantization, these chips will        
enable sophisticated autonomy even in  
resource-constrained environments (Zhang et al., 
2023). 
 
This trend will support persistent, long-duration 
missions with onboard data processing, reducing 
dependence on cloud connectivity and improving 
security and latency. 

9.4 Enhanced Interoperability Standards 
 
To overcome current fragmentation, ongoing 
evolution of interoperability protocols such            
as the Unmanned Ground Vehicle  
Interoperability Profile (UGV IOP) and European 
initiatives like iMUGS aim to establish        
common standards for communication,       
control, and data exchange across 
heterogeneous robotic systems (Pradhan et al., 
2017). Greater industry and governmental 
collaboration will help reduce vendor lock-in, 
facilitating multi-vendor deployments and 
cooperative multi-robot missions (Valori et al., 
2021). 
 
Efforts will also emphasize cybersecurity, 
ensuring secure, authenticated interoperability to 
protect against adversarial threats (Tanimu and 
Abada 2025). 
 

9.5 Resilient Autonomy in GPS-Denied 
Environments 

 
Robust localization and navigation in GPS-
denied or degraded environments will be         
critical for many UGV applications. Future 
systems will integrate advanced RF-based 
localization, 5G/6G connectivity, and multi- 
sensor SLAM approaches to maintain       
situational awareness (Alghamdi et al., 2025). 
Machine learning models trained to infer      
terrain and environment dynamics will              
further improve autonomous decision-       
making in complex, unknown settings (Krecht et 
al., 2023). 
 
Such resilient autonomy will be pivotal in 
subterranean, urban, or contested military 
environments. 
 

DISCLAIMER (ARTIFICIAL INTELLIGENCE) 
 
Author(s) hereby declare that generative AI 
technologies such as Large Language Models, 
etc. have been used during the writing or editing 
of manuscripts. This explanation will include the 
name, version, model, and source of the 
generative AI technology and as well as all input 
prompts provided to the generative AI 
technology. 
 
Details of the AI usage are given below: 
 

1. GPT 
2. Gemini 
3. Perplexity 
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