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ABSTRACT 
 

The paradox of energy abundance and energy poverty describes the contradiction where countries 
endowed with vast energy resources struggle to provide modern energy access to their 
populations. According to the World Bank, less than 15% of Nigerians have access to clean 
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cooking energy, with the majority relying on traditional biomass such as firewood and charcoal, 
which have adverse health, environmental, and socio-economic implications. This paradox in 
Nigeria is investigated by analysing access to clean fuels and technologies for cooking, quarterly 
time-series data from the World Bank spanning 2000 to 2024. The Autoregressive Integrated 
Moving Average (ARIMA) (p,d,q) modelling framework was employed to analyse and forecast 
trends in clean cooking energy access. The model incorporates access to clean fuels and 
technologies for cooking (% of population) as the dependent variable, while autoregressive (AR) 
and moving average (MA) components serve as independent variables. The study is grounded in 
the Energy Ladder Theory, which posits that households transition from traditional biomass to 
cleaner and more efficient energy sources as income and education levels rise. Estimation using 
Generalised Least Squares (GLS) reveals a statistically significant positive coefficient for MA (4) at 
0.4567, suggesting that approximately 46% of current variations in access levels are influenced by 
past shocks occurring four quarters earlier. Historical data from 2000 to 2024 reveal very low 
adoption rates of clean cooking fuels, starting below 1% and only reaching about 30.8% by 2024. 
The ARIMA (1,2,4) model projects a continued but modest upward trend through 2050, with 
substantial uncertainty surrounding the pace of growth. The study contributes to the expanding 
discourse on energy justice in resource-rich but energy-poor economies. It affirms that sustainable 
development in Nigeria depends not only on exploiting energy resources, but on dismantling the 
structural barriers that hinder equitable access to their benefits. Given the findings, we recommend 
that policymakers prioritise targeted investments in clean cooking infrastructure, expand public 
awareness campaigns on the health and environmental benefits of clean fuels, and strengthen 
regulatory frameworks to encourage private sector participation in clean energy delivery. 
 

 
Keywords: Autoregressive Integrated moving average; energy abundance; energy poverty; Nigeria, 

energy ladder theory. 
 

SYMBOLS 
 
AR : Autoregressive 
MA : Moving Average 
ADF : Augmented Dickey-Fuller Test 
GLS : Generalized Least Squares 
SDG : Sustainable Development Goal 
GDP : Gross Domestic Product 
AIC : Akaike Information Criterion 
BIC : Bayesian Information Criterion 
R² : Coefficient of Determination 
p : Autoregressive order (number of AR  

lags) 
d : Differencing order for stationarity in  

ARIMA 
q : Moving average order (number of MA  

lags) 
εt : Error term (white noise) at time t 
yt : Dependent variable (access to clean  

fuels at time t) 
Ω : Variance-covariance matrix of error  

terms 
SD : Standard Deviation 
 

1. INTRODUCTION 
 
Sub-Saharan Africa (SSA) significantly lags 
behind in providing clean cooking energy to its 
population. It is commonly recognised that the 
cooking methods in the Global South are not 

sustainable, and at the same time, the share of 
energy spent on cooking in households is        
high. For instance, in Kenya, 98% of the energy 
spent in a household goes on cooking and hot 
water, whereas for the same activities, a 
household in Spain spends 50% (Vassiliades et 
al., 2022; Mewamba-Chekem & Noumessi 
Fodjou, 2021).   
 
Nigeria is endowed with vast energy resources, 
including oil, natural gas, coal, and considerable 
renewable energy potential, such as solar and 
hydro. Despite this abundance, a significant 
portion of the Nigerian population continues to 
suffer from energy poverty, particularly in the 
form of limited access to clean fuels and 
technologies for cooking. According to the World 
Bank (2024), less than 15% of Nigerians have 
access to clean cooking energy, with the majority 
relying on traditional biomass such as firewood 
and charcoal, which have adverse health, 
environmental, and socio-economic implications. 
At COP26, Nigeria announced its commitment to 
carbon neutrality by 2060. Nigeria’s Energy 
Transition Plan (ETP) was unveiled shortly after, 
highlighting the scale of effort required to achieve 
the 2060 net-zero target whilst also meeting the 
nation’s energy needs (Nigeria’s Energy 
Transition Plan, 2022; Ekechukwu & Eziefula, 
2025).  
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The paradox of energy abundance amidst 
persistent energy poverty raises critical questions 
about the efficiency of energy governance, policy 
implementation, and infrastructure development 
in Nigeria. Although the country ranks among the 
top oil and gas producers in Africa, energy 
services remain unreliable, unaffordable, and 
inaccessible for millions, especially in rural and 
peri-urban areas (IEA, 2022). Women and 
children are disproportionately affected due to 
their central roles in household energy use, 
exposing them to indoor air pollution, respiratory 
diseases, and time poverty (WHO, 2021). 
 
The research problem stems from this 
disconnection between resource wealth and 
actual energy service delivery. Several studies 
have explored electricity generation and grid 
access in Nigeria; however, fewer have 
empirically examined access to clean cooking 
fuels using time-series forecasting approaches. A 
study indicates that SSA's access to clean fuels 
and cooking technologies is 44 percentage 
points lower than the average in Asia, Latin 
America, and Europe. Economic differences and 
resource endowments account for approximately 
60 per cent of this gap (Malah-Kuete, 2025). This 
study fills the gap by employing the 
Autoregressive Integrated Moving Average 
(ARIMA) model to analyse and forecast access 
to clean cooking fuels over time. Understanding 
the dynamics of this access is crucial for 
designing informed policies aligned with 
Sustainable Development Goal 7 (Affordable and 
Clean Energy for All). The rationale for the study 
lies in its potential to provide empirical evidence 
that supports targeted interventions and 
policymaking. By forecasting trends in clean 
cooking fuel access, the study helps anticipate 
future challenges and assess the feasibility of 
Nigeria achieving universal energy access 
despite its abundant energy endowment. 
Ultimately, it aims to contribute to the broader 
discourse on energy justice and sustainable 
development in resource-rich but energy-poor 
settings. 
 

2. PROBLEM DESCRIPTION 
 
Despite Nigeria’s vast endowment of energy 
resources, including oil, natural gas, coal, and 
abundant renewable potential such as solar and 
hydro, the majority of its population remains 
trapped in energy poverty. The contradiction lies 
in the fact that while Nigeria ranks among the 
largest oil and gas producers in Africa, less than 
15% of households have access to clean fuels 

and technologies for cooking. Instead, traditional 
biomass such as firewood and charcoal 
dominate household energy consumption, 
particularly in rural and peri-urban communities. 
 
This situation has far-reaching implications: 
reliance on biomass fuels exposes women and 
children to household air pollution, respiratory 
diseases, and significant time poverty from fuel 
collection. Environmentally, deforestation and 
greenhouse gas emissions are exacerbated, 
undermining climate change mitigation efforts. 
Economically, energy poverty restricts 
productivity, reinforces poverty cycles, and 
hinders the attainment of Sustainable 
Development Goal 7 (affordable and clean 
energy for all). 
 
The persistence of this paradox is rooted not in 
resource scarcity but in systemic inefficiencies, 
weak infrastructure, poor governance, and 
fragmented policy implementation. Previous 
research has mainly concentrated on electricity 
access and generation capacity, leaving a 
knowledge gap on clean cooking energy 
dynamics. This research, therefore, addresses 
this gap by empirically investigating Nigeria’s 
clean cooking access trends using a time-series 
forecasting approach (ARIMA), in order to better 
understand the inertia and structural challenges 
hindering progress. 
 

3. RESEARCH OBJECTIVES 
 

1. To analyze historical patterns of household 
access to clean cooking fuels in Nigeria. 

2. To apply ARIMA forecasting models to 
predict future clean cooking adoption 
trends. 

3. To evaluate policy, governance, and 
institutional barriers affecting energy 
access expansion. 

4. To recommend data-driven strategies for 
achieving universal clean cooking access 
in Nigeria. 

5. To contribute empirical insights to Nigeria’s 
progress toward Sustainable Development 
Goal 7. 

 

4. MATERIALS AND METHODS 
 
We adopt a quantitative, longitudinal research 
design rooted in time-series econometric 
analysis. The choice of this design is informed by 
the objective to examine long-term trends and 
dynamic patterns in access to clean fuels and 
technologies for cooking in Nigeria. A longitudinal 
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framework is suitable for assessing the 
persistence of energy poverty over time, 
particularly in the context of energy resource 
abundance. Quantitative methods allow for 
objective measurement, forecasting, and 
empirical validation using statistical models 
(Gujarati & Porter, 2009; Nahabwe & Kagarura, 
2025). 
 
We utilise secondary time-series data obtained 
from the World Bank’s World Development 
Indicators (WDI) database, focusing on Nigeria. 
The key variable of interest is “Access to clean 
fuels and technologies for cooking (% of 
population)”, representing the dependent 
variable. The dataset spans quarterly 
observations from 2000 to 2024, offering 97 data 
points for robust time-series modelling. 
 
No sampling is conducted in the conventional 
sense, as we leverage complete national-       
level data rather than survey-based microdata. 
Annual data is transformed into a quarterly 
format using frequency disaggregation methods, 
such as the Chow-Lin technique, to enable        
more detailed temporal analysis (Chow & Lin, 
1971; Nahabwe & Kagarura, 2025). This 
approach ensures the granularity needed for 
ARIMA model specification and forecasting 
accuracy. 
 
We employ the Autoregressive Integrated 
Moving Average (ARIMA) modelling framework, 
a widely used method for univariate time-series 
forecasting (Box & Jenkins, 1976; Nahabwe & 
Kagarura, 2025). ARIMA models are particularly 
suitable for modelling non-stationary data that 
exhibit autocorrelation, trends, and seasonality. 
The modelling process follows four steps: 
Stationarity testing using the Augmented Dickey-
Fuller (ADF) test to determine the order of 
differencing (Dickey & Fuller, 1979; Nahabwe & 
Kagarura, 2025). Identification of model 
parameters (p, d, q) through autocorrelation 
function (ACF) and partial autocorrelation 
function (PACF) plots. Estimation of the       
model parameters using Generalised Least 
Squares (GLS) to account for potential 
autocorrelation and heteroskedasticity. Model 
diagnostics, including residual tests and 
information criteria (AIC, BIC), to ensure optimal 
model fit. 
 
The rationale for adopting the ARIMA model lies 
in its strength in capturing the inertia and 
memory structure in time-dependent variables, 
such as clean energy access, where current 

values are often influenced by historical patterns 
and past policy interventions (Hyndman & 
Athanasopoulos, 2018; Nahabwe & Kagarura, 
2025). 
 
Given the objective of forecasting and analysing 
the temporal behaviour of clean cooking fuel 
access, ARIMA is the most appropriate model 
due to its parsimonious structure and strong 
predictive power. Unlike structural models that 
require multiple explanatory variables, ARIMA 
focuses on the internal dynamics of the series, 
making it ideal when explanatory data are limited 
or where policy shifts are reflected in the 
historical trends of the target variable (Lütkepohl, 
2005; Nahabwe & Kagarura, 2025). Additionally, 
GLS estimation ensures that serial correlation 
and variance issues do not bias the results, 
thereby improving model efficiency and 
accuracy. The general form of an ARIMA (p,d,q) 
model is expressed as: 
 

𝑌𝑡= 𝑐 + ∑ 𝝓𝑖𝑌𝑡−𝑖
𝑝
𝑖=1   +∑ θ𝑗𝜀𝑡−𝑗

𝑞
𝑗=1 + 𝜀𝑡…… (1) 

 
Where; 
 
𝑌𝑡 is Access to clean fuels and technologies for 
cooking (% of population), at time 𝑡 
cis constant term 
𝜀𝑡 is white noise at time 𝑡 
 𝝓𝑖 are the coefficients of the autoregressive 
terms 
θ𝑗 are the coefficients of the moving average 

terms 
p = Number of lagged AR terms 
d = Number of differences required to make the 
series stationary 
q = Number of lagged MA terms (Box & Jenkins 
1976; Wooldridge, 2013; Nahabwe & Kagarura, 
2025) 
 
Generalised least squares (GLS) estimation is 
selected for its ability to effectively handle time-
series data that exhibits serial correlation and 
heteroscedasticity, thus providing more reliable 
and efficient parameter estimates compared to 
Ordinary Least Squares (OLS) in this context. 
The GLS procedure adjusts for potential 
correlations and non-constant variances in         
the error terms, which are common in time- 
series data (Wooldridge 2016; Nahabwe & 
Maniple, 2025). The GLS estimator for the 
regression coefficients is given by the following 
formula: 
 

β̂ = (𝑋′Ω
−1

𝑋)−1𝑋′Ω
−1

𝑦 …………………….(2) 
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Where: 
 

β̂is a column matrix of coefficients 
X is the matrix of independent variables 
y is the column vector of the dependent variable 
Ω is the variance-covariance matrix of the error 
terms, accounting for both heteroscedasticity and 
autocorrelation in the residuals (Wooldridge, 
2013; Nahabwe & Maniple, 2025). 
 
Prior to modelling, the dataset is visually 
inspected for trends and seasonality. Stationarity 
is assessed using the Augmented Dickey-Fuller 
(ADF) test, and differencing is applied where 
necessary to achieve stationarity. The optimal 
ARIMA model is identified using autocorrelation 
function (ACF) and partial autocorrelation 
function (PACF) plots, followed by selection 
based on Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC). Diagnostic 
checks are performed, including the Ljung-Box Q 
test for autocorrelation, and residual analysis to 
ensure white noise characteristics. 
 
The ARIMA model is chosen for its robustness in 
handling time-dependent data, especially in 
situations where no clear explanatory variables 
are involved beyond the behaviour of the series 
itself (Lütkepohl, 2005; Nahabwe & Kagarura, 
2025). Given that the objective is to examine 
trends and predict future performance of nuclear 
energy, ARIMA’s strength in producing reliable 
short- to medium-term forecasts makes it highly 
suitable. Furthermore, this method allows for 
empirical insights that are directly relevant to 
policy discourse on the environmental 
sustainability of energy systems, without the 
confounding influence of external variables. 
 

5. THEORETICAL BACKGROUND 
 
Globally, access to clean fuels and technologies 
for cooking remains a significant development 
challenge. According to the International Energy 
Agency (IEA, 2022), over 2.3 billion people still 
rely on traditional biomass, coal, or kerosene for 
cooking. This lack of clean cooking access 
contributes to nearly 3.2 million premature 
deaths annually due to indoor air pollution (WHO, 
2021). While progress has been made in regions 
like East Asia and Latin America, Sub-Saharan 
Africa continues to lag significantly, with access 
rates stagnating or even declining in some 
countries. Sustainable Development Goal 7 
(SDG 7) emphasises the need for universal 
access to affordable, reliable, sustainable, and 
modern energy by 2030. However, achieving this 

goal is constrained by issues such as 
affordability, infrastructure deficits, weak policy 
enforcement, and low investment in clean 
cooking technologies (ESMAP, 2020). 
 
In Sub-Saharan Africa, the paradox of energy 
abundance and energy poverty is stark. Despite 
hosting vast reserves of fossil fuels and 
renewables, the region has the lowest rate of 
access to modern energy services globally (IEA, 
2022). Countries like Angola, Nigeria, and Ghana 
are oil-rich, yet a significant portion of their 
populations lack access to clean cooking energy. 
Regional studies emphasise that clean cooking 
solutions remain largely unaffordable for poor 
households, and efforts to transition are often 
hampered by weak policy coordination and 
limited access to finance (Brew-Hammond, 2010; 
Pachauri et al., 2013). Moreover, cultural 
preferences and a lack of awareness further 
hinder adoption. Efforts such as the African 
Clean Cooking Energy Solutions (ACCES) 
initiative have been established, yet adoption 
remains slow due to limited scalability and 
localised implementation challenges (UNDP, 
2025). 
 
Nigeria presents a compelling case of energy 
resource wealth juxtaposed with widespread 
energy poverty. Despite being Africa’s largest oil 
producer and having considerable natural gas 
reserves, over 80% of the population relies on 
traditional biomass for cooking (World Bank, 
2024). National efforts such as the Nigeria 
Energy Transition Plan and the National Clean 
Cooking Policy have aimed to improve access, 
yet implementation has been weak due to 
funding constraints, poor inter-agency 
coordination, and limited stakeholder 
engagement (NESP, 2022). Scholars have 
critiqued Nigeria’s energy governance as 
fragmented and overly reliant on grid-based 
electrification, with insufficient emphasis on 
decentralised and clean cooking solutions (Aklin 
et al., 2018). The urban-rural divide further 
exacerbates inequality in access, with rural 
households being the most disadvantaged 
(Oyedepo, 2012). Moreover, previous empirical 
studies in Nigeria have primarily focused on 
electricity access and supply, with minimal focus 
on clean cooking energy from a time-series 
forecasting perspective, thus creating a research 
gap that this study addresses. 
 
The study is grounded in the Energy Ladder 
Theory, which posits that households transition 
from traditional biomass to cleaner and more 
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efficient energy sources as income and 
education levels rise (Leach, 1992; Kagarura et 
al., 2025). The theory explains energy 
consumption behaviour and has been widely 
applied in studies examining fuel-switching 
dynamics in developing countries. However, 
critics argue that the transition is not always 
linear due to fuel stacking, where households 
use multiple energy sources simultaneously 
(Masera et al. 2000). Despite its limitations, the 
Energy Ladder Theory provides a useful lens for 
understanding barriers to clean fuel adoption in 
resource-rich but energy-poor settings like 
Nigeria. 
 
The conceptual framework underpinning this 
study is structured around the relationship 
between energy resource endowment and 
access to clean fuels and technologies for 
cooking, mediated by policy, infrastructure, 
economic, and behavioural variables. The 
dependent variable is the percentage of the 
population with access to clean fuels and 
technologies for cooking. Independent variables 
are past access trends captured through 
autoregressive and moving average terms. The 
framework assumes that despite resource 
abundance, systemic inefficiencies and policy 
failures perpetuate energy poverty, particularly in 
clean cooking access. The ARIMA modelling 
approach is thus used to forecast access trends 
and quantify inertia in energy poverty reduction. 
 

6. RESULTS AND DISCUSSION 
 
Descriptive analysis of access to clean fuels and 
technologies for cooking (% of population) in 
Nigeria reveals persistent energy poverty over 
the study period (2000–2024). The mean access 
rate is 7.91%, suggesting that, on average, fewer 
than 8% of Nigerians had access to clean 
cooking energy. The median value of 2.5% is 
substantially lower than the mean, indicating a 
positively skewed distribution and that, for much 
of the period, access remained very low. The 
maximum value of 30.8% and the minimum of 
0.9% reveal wide disparities, while a standard 
deviation of 9.36 shows substantial variability. 
 
The skewness value of 1.18 and kurtosis of 2.92 
reflect moderate right skew and near-normal 
peakedness. The Jarque-Bera test statistic of 
22.50 (p = 0.000013) rejects the null hypothesis 
of normality, confirming that the data is non-
normally distributed, a feature that validates the 
use of time series techniques like ARIMA, which 
do not rely on normality assumptions. 

Stationarity tests using Augmented Dickey-Fuller 
show the original series is non-stationary 
(p>0.05) in level and first difference achieves 
stationarity upon second differencing (p<0.05). 
Consequently, the ARIMA (1,2,4) model is 
identified as the best fit based on model selection 
criteria (AIC=-4.087729; SC=-4.007080; H-QC = 
-4.055141). Inferential statistics using model 
output are estimated as follows: 
 
Results of ARIMA (1,2,4) model (Appendix 6) 
 

𝐴𝐶𝐶𝐸𝑆𝑆_𝑇𝑂_𝐶𝐿𝐸𝐴𝑁_𝐹𝑈𝐸𝐿𝑆̂
𝑡 = 0.006588- 

0.023206AR(1) +0.456719MA(4) …......…(3) 
 
Hence, 
 

𝛽̂𝐺𝐿𝑆 = [
0.006588

−0.023206
0.456719

] 

 
The constant term (0.006588) is statistically 
insignificant, suggesting no systematic upward or 
downward drift in access trends independent of 
past values or shocks. 
 
The AR(1) coefficient of –0.0232 is also 
statistically insignificant, indicating weak or 
negligible autoregressive behaviour after second 
differencing. In essence, past values (lag 1) do 
not strongly influence current access levels. 
 
The MA(4) coefficient is 0.4567 and statistically 
significant, indicating that approximately 46% of 
current variations in access to clean cooking 
fuels are attributable to shocks that occurred four 
quarters earlier. This finding confirms a high 
degree of inertia in Nigeria’s clean cooking 
energy access trends highlighting that past 
disruptions, policy delays, or implementation 
gaps continue to influence outcomes well into the 
future. 
 
The model’s Adjusted R-squared of 0.2779 
implies that approximately 28% of the variability 
in the differenced access series is explained by 
the model, a reasonable outcome for univariate 
time series forecasting in public policy contexts 
(Gujarati & Porter, 2009; Nahabwe & Kagarura, 
2025). 
 
Regarding model diagnostics, the normality test 
(Appendix 8) rejects the null hypothesis of 
normally distributed residuals (p < 0.05). 
However, the Ljung-Box Q-test (Appendix 6) 
yields p-values greater than 5%, implying that 
residuals behave like white noise, i.e., they are 
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uncorrelated and homoscedastic. This confirms 
that the model is not mis-specified and has 
captured the underlying structure in the data 
adequately. Furthermore, the ARIMA structure 
analysis (Appendix 7) confirms that both 
autoregressive and moving average roots lie 
within the unit circle, satisfying the conditions for 
stationarity and invertibility, which are essential 
for the model’s stability (Hamilton, 1994; 
Nahabwe & Kagarura, 2025). 
 
Appendix 9 shows that historical data from 2000 
to 2024 reveal very low adoption rates of clean 
cooking fuels, starting below 1% and only 
reaching about 30.8% by 2024. The ARIMA 
(1,2,4) model projects a continued but modest 
upward trend through 2050, with substantial 
uncertainty surrounding the pace of growth. 
These findings empirically validate the paradox 
of energy abundance and energy poverty in 
Nigeria: despite its vast oil and gas reserves, 
access to clean cooking fuels remains extremely 
limited and characterised by strong temporal 
inertia. The significant MA(4) component further 
highlights the prolonged influence of past shocks, 
suggesting that progress in expanding clean 
energy access is often delayed, reactive and 
fragmented, a pattern consistent with earlier 
observations by Aklin et al. (2018) and Oyedepo 
(2012). 
 
Unlike prior cross-sectional or descriptive 
studies, this research applies a robust time-
series forecasting approach, offering novel 
insights into the temporal dynamics of energy 
poverty. While previous studies like Brew-
Hammond (2010) and Pachauri et al. (2013) 
emphasise structural and governance failures, 
this study quantifies how policy lags and 
implementation shocks propagate over time, thus 
hindering access expansion. 
 
Furthermore, the findings align with the Energy 
Ladder Theory (Leach, 1992; Kagarura et al., 
2025), which posits that households transition to 
cleaner fuels as incomes rise. However, our 
results also support critiques of the linearity of 
this model (Masera et al., 2000), given that clean 
cooking access remains stagnant even as 
national GDP has grown, suggesting that 
economic growth alone is insufficient without 
targeted interventions. 
 
The unique contribution of this study lies in its 
use of ARIMA forecasting to highlight inertia and 
volatility in clean cooking access trends. It 
underscores the urgency of adopting forward-

looking, data-driven energy policies that can 
anticipate and smooth out these lags. 
Additionally, the low adjusted R-squared and 
residual behaviour signal that non-economic and 
institutional variablessuch as political will, policy 
coordination, and household preferences a 
crucial role and should be integrated into future 
models. 
 

7. CONCLUSION 
 
We set out to interrogate the persistent 
contradiction between Nigeria’s immense energy 
resource endowment and the widespread 
inaccessibility to clean fuels and technologies for 
cooking. Anchored in a time-series forecasting 
framework, the research has illuminated the 
inertia, volatility, and structural gaps 
characterising Nigeria’s progress toward clean 
energy access. While Nigeria possesses 
sufficient natural resources to ensure universal 
modern energy services, the country remains 
trapped in a condition of energy poverty, an issue 
that is both preventable and policy-contingent. 
 
The study reinforces the understanding that 
energy poverty is not merely a function of 
resource scarcity, but a product of governance 
inefficiencies, institutional weaknesses, and 
policy inertia (Aklin et al., 2018; Brew-Hammond, 
2010). The failure to convert resource wealth into 
equitable and sustainable access to clean 
cooking fuels exemplifies the broader structural 
disconnect within Nigeria’s energy policy 
landscape. The challenge is not one of 
technological feasibility, but rather of 
prioritisation, inclusion, and sustained political 
commitment. 
 
Moreover, the analysis underscores that 
addressing clean cooking energy poverty 
requires more than aggregate economic growth. 
It calls for deliberate and inclusive policy 
frameworks that integrate behavioural, social, 
and infrastructural dimensions of energy access 
particularly in contexts where rural populations 
and women are disproportionately affected 
(WHO, 2021; UNDP, 2025). Empirical evidence 
presented here offers a call to action for 
policymakers, development practitioners, and 
scholars to reorient Nigeria’s energy strategy 
from a supply-centric to a people-centred 
approach. 
 
Our study contributes to the expanding discourse 
on energy justice in resource-rich but energy-
poor economies. It affirms that sustainable 
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development in Nigeria depends not only on 
exploiting energy resources, but on dismantling 
the structural barriers that hinder equitable 
access to their benefits. Bridging this gap is not 
just a policy imperative; it is a moral and 
developmental necessity. 
 

8. LIMITATIONS 
 
While this study offers critical empirical insights 
into the paradox of energy abundance and 
energy poverty in Nigeria, several limitations are 
acknowledged in relation to its design, data, and 
analytical approach. We employed a univariate 
time-series design using the ARIMA modelling 
framework. Although this method is appropriate 
for forecasting and capturing the historical 
dynamics of clean cooking fuel access, it does 
not account for multivariate interactions with 
explanatory factors such as income levels, 
urbanisation, education, energy prices, or policy 
interventions. This constraint limits the 
explanatory power of the model and may omit 
important structural determinants of energy 
poverty (Gujarati & Porter, 2009; Lütkepohl, 
2005; Kagarura et al., 2025). A multivariate 
approach, such as Vector Autoregression (VAR) 
or Structural Equation Modelling (SEM), might 
have provided deeper causal insights but was 
outside the scope of this study. 
 
We relied exclusively on secondary data from the 
World Bank’s World Development Indicators, 
transformed from annual to quarterly frequency 
using interpolation methods. While frequency 
disaggregation improves temporal resolution, it 
may introduce estimation error or mask abrupt 
changes due to shocks or policy changes (Chow 
& Lin, 1971). Furthermore, national-level         
data obscure intra-country disparities, particularly 
the rural-urban divide and regional 
heterogeneities in clean energy access (IEA, 
2022). Thus, the results may not fully reflect 
localised experiences of energy poverty, 
especially in Nigeria’s underserved northern and 
riverine communities. 
 
Additionally, the lack of disaggregated 
demographic data such as gender, income 
quintiles, or household-level behavior limits the 
ability to conduct distributional analysis or 
explore equity dimensions of energy access. This 
is especially relevant given that women and 
children bear the brunt of energy poverty due to 
their roles in cooking and fuel collection (WHO, 
2021). 
 

The ARIMA(1,2,4) model used in the study 
assumes linearity and stationarity after 
differencing. While diagnostic tests confirmed the 
model’s validity (stationary roots, white noise 
residuals), the non-normality of residuals 
(Jarque-Bera p < 0.05) suggests potential mis-
specification or the presence of unmodeled 
nonlinearities (Hamilton, 1994; Nahabwe & 
Kagarura, 2025). Moreover, the relatively low 
adjusted R-squared (0.2779) indicates that a 
large portion of the variability in access trends 
remains unexplained, potentially due to omitted 
variables or structural breaks not captured in the 
ARIMA framework. 
 
The use of Generalised Least Squares (GLS) 
improves estimation efficiency, but the absence 
of real-time policy variables, fuel pricing data, or 
technological adoption rates restricts the model’s 
policy sensitivity. As a result, the findings should 
be interpreted as indicative rather than definitive 
forecasts. 
 

9. RECOMMENDATIONS 
 
We propose the following recommendations, 
drawing from our findings and the persistent 
paradox of energy abundance alongside energy 
poverty in Nigeria, in the areas of policy, 
programming, and research: 
 
The Federal Government should prioritise a 
comprehensive and enforceable national policy 
on clean cooking access that includes specific, 
measurable targets aligned with SDG 7. This 
policy should go beyond generic electrification 
plans and directly address clean cooking 
infrastructure, affordability, and distribution (IEA, 
2022). 
 
Existing fossil fuel subsidiesparticularly on 
kerosene and petrolshould be gradually 
reallocated to subsidise clean cooking 
technologies such as LPG, ethanol, biogas, and 
improved cookstoves. Targeted subsidies will 
help bridge affordability gaps for low-income and 
rural households (Pachauri et al., 2013; UNDP, 
2025). 
 
Improved coordination is needed between the 
Ministries of Energy, Environment, Women's 
Affairs, and Health to integrate clean cooking into 
broader development planning. Establishing a 
dedicated Clean Cooking Task Force under the 
National Council on Energy could enhance 
accountability and coherence in implementation. 
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Given the disproportionately low access in rural 
communities, government and development 
partners should invest in community-based clean 
cooking programmes, including micro-financing 
schemes, awareness campaigns, and rural 
distribution channels. These programmes should 
leverage local cooperatives and women’s groups 
for outreach and adoption (Brew-Hammond, 
2010; WHO, 2021). 
 

Policy tools such as tax incentives, start-up 
grants, and import duty waivers for clean cooking 
technology manufacturers and distributors should 
be expanded. Encouraging local innovation and 
entrepreneurship in the clean cooking value 
chain will reduce costs and increase adoption 
rates (Aklin et al., 2018). 
 

Existing social programs, such as the           
National Social Investment Program (NSIP) 
should include clean cooking as part of 
household support packages. This approach         
will increase penetration while protecting 
vulnerable populations from harmful indoor air 
pollution. 
 

Future research could employ multivariate 
econometric and panel data models that 
incorporate socio-economic, cultural, and policy 
variables to better understand the drivers of 
clean energy adoption in Nigeria’s diverse 
regions (Lütkepohl, 2005). 
 

Empirical evaluations of past interventions as the 
National Clean Cooking Policy (NESP, 2022)  
are needed to identify best practices, 
implementation bottlenecks, and replicable 
models. Mixed-method studies combining 
quantitative and qualitative insights would be 
particularly valuable. 
 

Enhanced ARIMA or machine learning-based 
models incorporating behavioural, climatic, and 
demographic indicators can improve long-term 
access forecasting and guide strategic planning 
(Hyndman & Athanasopoulos, 2018; Nahabwe & 
Kagarura, 2025). 
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APPENDICES 
 

Appendix 1. Descriptive statistics 
 

  Access to clean fuels and technologies for cooking (% of population) 

Mean 7.911856 
Median 2.5 
Maximum 30.8 
Minimum 0.9 
Std. Dev. 9.355397 
Skewness 1.179137 
Kurtosis 2.91788 
Jarque-Bera 22.5048 
Probability 0.000013 
Sum 767.45 
Sum Sq. Dev. 8402.251 
Observations 97 

 
Appendix 2. Unit root test, Access to clean fuels and technologies for cooking (% of 

population) (in Level) 
 

Null Hypothesis: ACCESS_TO_CLEAN_FUELS has a unit root 
Exogenous: None   
Lag Length: 5 (Automatic - based on SIC, maxlag=11) 
     
   t-Statistic   Prob.* 
     
Augmented Dickey-Fuller test statistic  0.656869  0.8562 
Test critical values: 1% level  -2.590622  
 5% level  -1.944404  
 10% level  -1.614417  
     
*MacKinnon (1996) one-sided p-values.  
     
Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(ACCESS_TO_CLEAN_FUELS)  
Method: Least Squares   
Date: 07/13/25   Time: 15:34   
Sample (adjusted): 2001Q3 2024Q1  
Included observations: 91 after adjustments  
     
Variable Coefficient Std. Error t-Statistic Prob.   
     
ACCESS_TO_CLEAN_FUELS(-1) 0.000554 0.000843 0.656869 0.5130 
D(ACCESS_TO_CLEAN_FUELS(-1)) 1.016087 0.081373 12.48671 0.0000 
D(ACCESS_TO_CLEAN_FUELS(-2)) -0.001197 0.110972 -0.010785 0.9914 
D(ACCESS_TO_CLEAN_FUELS(-3)) -0.001197 0.110972 -0.010785 0.9914 
D(ACCESS_TO_CLEAN_FUELS(-4)) 0.686764 0.110972 6.188635 0.0000 
D(ACCESS_TO_CLEAN_FUELS(-5)) -0.718135 0.088297 -8.133196 0.0000 
     
R-squared 0.992959     Mean dependent var 0.328571 
Adjusted R-squared 0.992545     S.D. dependent var 0.324071 
S.E. of regression 0.027981     Akaike info criterion -4.250931 
Sum squared resid 0.066549     Schwarz criterion -4.085380 
Log likelihood 199.4174     Hannan-Quinn criter. -4.184142 
Durbin-Watson stat 2.047714    
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Appendix 3. Unit root test, Access to clean fuels and technologies for cooking (% of 
population) (in First difference) 

 

Null Hypothesis: D(ACCESS_TO_CLEAN_FUELS) has a unit root 
Exogenous: None   
Lag Length: 4 (Automatic - based on SIC, maxlag=11) 
     
   t-Statistic   Prob.* 
     
Augmented Dickey-Fuller test statistic -0.365926  0.5502 
Test critical values: 1% level  -2.590622  
 5% level  -1.944404  
 10% level  -1.614417  
     
*MacKinnon (1996) one-sided p-values.  
     
Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(ACCESS_TO_CLEAN_FUELS,2) 
Method: Least Squares   
Date: 07/13/25   Time: 15:33   
Sample (adjusted): 2001Q3 2024Q1  
Included observations: 91 after adjustments  
     
Variable Coefficient Std. Error t-Statistic Prob.   
     
     
D(ACCESS_TO_CLEAN_FUELS(-1)) -0.002514 0.006870 -0.365926 0.7153 
D(ACCESS_TO_CLEAN_FUELS(-1),2) 0.005433 0.079595 0.068252 0.9457 
D(ACCESS_TO_CLEAN_FUELS(-2),2) 0.005433 0.079595 0.068252 0.9457 
D(ACCESS_TO_CLEAN_FUELS(-3),2) 0.005433 0.079595 0.068252 0.9457 
D(ACCESS_TO_CLEAN_FUELS(-4),2) 0.693393 0.079595 8.711480 0.0000 
     
R-squared 0.454184     Mean dependent var 0.007143 
Adjusted R-squared 0.428797     S.D. dependent var 0.036900 
S.E. of regression 0.027888     Akaike info criterion -4.267846 
Sum squared resid 0.066887     Schwarz criterion -4.129887 
Log likelihood 199.1870     Hannan-Quinn criter. -4.212188 
Durbin-Watson stat 2.008991    

 
Appendix 4. Unit root test,Access to clean fuels and technologies for cooking (% of 

population)(in Second difference) 
 

Null Hypothesis: D(ACCESS_TO_CLEAN_FUELS,2) has a unit root 
Exogenous: None   
Lag Length: 3 (Automatic - based on SIC, maxlag=11) 
     
   t-Statistic   Prob.* 
     
Augmented Dickey-Fuller test statistic -2.005179  0.0436 
Test critical values: 1% level  -2.590622  
 5% level  -1.944404  
 10% level  -1.614417  
     
*MacKinnon (1996) one-sided p-values.  
     
Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(ACCESS_TO_CLEAN_FUELS,3) 
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Method: Least Squares   
Date: 07/13/25   Time: 15:31   
Sample (adjusted): 2001Q3 2024Q1  
Included observations: 91 after adjustments  
     
Variable Coefficient Std. Error t-Statistic Prob.   
     
D(ACCESS_TO_CLEAN_FUELS(-1),2) -0.312039 0.155617 -2.005179 0.0481 
D(ACCESS_TO_CLEAN_FUELS(-1),3) -0.687961 0.134768 -5.104777 0.0000 
D(ACCESS_TO_CLEAN_FUELS(-2),3) -0.687961 0.110038 -6.252050 0.0000 
D(ACCESS_TO_CLEAN_FUELS(-3),3) -0.687961 0.077808 -8.841734 0.0000 
     
R-squared 0.736645     Mean dependent var 3.85E-17 
Adjusted R-squared 0.727564     S.D. dependent var 0.053164 
S.E. of regression 0.027749     Akaike info criterion -4.288268 
Sum squared resid 0.066991     Schwarz criterion -4.177901 
Log likelihood 199.1162     Hannan-Quinn criter. -4.243742 
Durbin-Watson stat 2.000000    

 
Appendix 5. Results of ARIMA(1,2,4) model 

 

Dependent Variable: DDACCESS_TO_CLEAN_FUELS  
Method: ARMA Generalized Least Squares (Gauss-Newton) 
Date: 07/13/25   Time: 15:45   
Sample: 2000Q3 2024Q1   
Included observations: 95   
Convergence achieved after 34 iterations  
Coefficient covariance computed using outer product of gradients 
d.f. adjustment for standard errors & covariance 
     
Variable Coefficient Std. Error t-Statistic Prob.   
     
C 0.006588 0.004429 1.487417 0.1403 
AR(1) -0.023206 0.104248 -0.222599 0.8243 
MA(4) 0.456719 0.096434 4.736082 0.0000 
     
R-squared 0.293235     Mean dependent var 0.006842 
Adjusted R-squared 0.277871     S.D. dependent var 0.036135 
S.E. of regression 0.030707     Akaike info criterion -4.087729 
Sum squared resid 0.086748     Schwarz criterion -4.007080 
Log likelihood 197.1671     Hannan-Quinn criter. -4.055141 
F-statistic 19.08528     Durbin-Watson stat 2.000231 
Prob(F-statistic) 0.000000    
     
Inverted AR Roots      -.02   
Inverted MA Roots  .58+.58i      .58+.58i   -.58-.58i -.58-.58i 

 
Appendix 6. Ljung-Box Q statistic/ test 

 

Date: 07/13/25   Time: 15:49    
Sample (adjusted): 2000Q3 2024Q1    
Q-statistic probabilities adjusted for 2 ARMA terms  
       
Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 
       
      . |.     |       . |.     | 1 -0.000 -0.000 2.E-05  
      . |.     |       . |.     | 2 -0.025 -0.025 0.0598  
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      . |.     |       . |.     | 3 -0.019 -0.019 0.0964 0.756 
      . |**    |       . |**    | 4 0.226 0.226 5.2894 0.071 
      . |.     |       . |.     | 5 -0.021 -0.023 5.3333 0.149 
      . |.     |       . |.     | 6 -0.027 -0.018 5.4077 0.248 
      . |.     |       . |.     | 7 -0.015 -0.007 5.4311 0.366 
      . |****  |       . |***   | 8 0.492 0.464 31.049 0.000 
      . |.     |       . |.     | 9 -0.013 -0.019 31.068 0.000 
      . |.     |       . |.     | 10 -0.026 -0.007 31.140 0.000 
      . |.     |       . |.     | 11 -0.025 -0.012 31.208 0.000 
      . |.     |       .*|.     | 12 0.018 -0.198 31.245 0.001 
      . |.     |       . |.     | 13 -0.029 -0.009 31.340 0.001 
      . |.     |       . |.     | 14 -0.030 -0.013 31.446 0.002 
      . |.     |       . |.     | 15 -0.029 -0.019 31.545 0.003 
      . |.     |       **|.     | 16 0.026 -0.244 31.626 0.005 
      . |.     |       . |.     | 17 -0.037 -0.026 31.784 0.007 
      . |.     |       . |.     | 18 -0.038 -0.033 31.961 0.010 
      . |.     |       . |.     | 19 -0.041 -0.034 32.161 0.014 
      .*|.     |       . |.     | 20 -0.125 -0.025 34.069 0.012 
      . |.     |       . |.     | 21 -0.038 -0.022 34.253 0.017 
      . |.     |       . |.     | 22 -0.037 -0.023 34.422 0.023 
      . |.     |       . |.     | 23 -0.037 -0.021 34.599 0.031 
      . |.     |       . |*     | 24 -0.056 0.101 35.012 0.039 
      . |.     |       . |.     | 25 -0.038 -0.012 35.201 0.050 
      . |.     |       . |.     | 26 -0.038 -0.009 35.390 0.063 
      . |.     |       . |.     | 27 -0.040 -0.009 35.602 0.078 
      .*|.     |       . |.     | 28 -0.106 -0.030 37.158 0.072 
      . |.     |       . |.     | 29 -0.032 -0.011 37.298 0.090 
      . |.     |       . |.     | 30 -0.030 -0.012 37.426 0.110 
      . |.     |       . |.     | 31 -0.031 -0.015 37.569 0.132 
      .*|.     |       .*|.     | 32 -0.079 -0.131 38.486 0.138 
      . |.     |       . |.     | 33 -0.029 -0.023 38.607 0.164 
      . |.     |       . |.     | 34 -0.028 -0.027 38.722 0.192 
      . |.     |       . |.     | 35 -0.028 -0.027 38.840 0.223 
      . |.     |       . |.     | 36 -0.024 0.043 38.928 0.258 

 

 
 

Appendix 7. ARIMA(1,2,4) structure 
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Appendix 8. Histogram of residuals 
 

 
 

Appendix 9. Graph showing Nigeria’s Access to clean fuels for cooking 2000-2050 
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