

Archives of Current Research International

Volume 25, Issue 10, Page 278-291, 2025; Article no.ACRI.145727 ISSN: 2454-7077

Artificial Intelligence and Renewable Energy Integration in the UK

Charles Nwaneri J. Ekeh a*

^a School of Science and Engineering, Atlantic International University, Pioneer Plaza, 900 Fort Street Mall 905, Honolulu, Hawaii 96813, USA.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/acri/2025/v25i101567

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://pr.sdiarticle5.com/review-history/145727

Review Article

Received: 13/08/2025 Published: 18/10/2025

ABSTRACT

Opportunities and problems are presented by the increasing use of renewable energy in the UK power grid. Renewable energy sources such as wind, solar and others are important to achieve the net-zero target of the UK, but their unpredictability causes issues with grid stability, storage management and intermittency. An increasing number of people believe that Artificial Intelligence (AI) can help solve these problems by improving energy storage systems, increasing renewable production and adapting grid operations. Through a secondary investigation into scholars' functions, official documents and studies of professional cases, the study seriously examines how Artificial Intelligence is changing the renewable power market in the United Kingdom. Results show how an AI system can increase dependence and efficiency, especially in areas of advanced forecasting, smart grid optimisation, future maintenance and storage management. The analysis indicates that AI applications directly tackle core renewable energy integration problems, yielding significant optimization: 90 – 95% increase in forecasting accuracy for wind and solar power generation; driving maintenance planning and lowering operating costs by up to 30%, while increasing accessibility to equipment by 20%; thus enhancing the profitability of renewable assets, grid resilience and efficiency. However, there are still issues with data security, regulator cohesion and

*Corresponding author: Email: cnjekeh@yahoo.com;

Cite as: Charles Nwaneri J. Ekeh. 2025. "Artificial Intelligence and Renewable Energy Integration in the UK". Archives of Current Research International 25 (10):278–291. https://doi.org/10.9734/acri/2025/v25i101567.

openness. According to the findings of the study, Artificial Intelligence (AI) makes a great promise to speed up the UK's switch to sustainable power, but more empirical research and better rules are required.

Keywords: Artificial Intelligence (AI); renewable energy; smart grids; energy storage; United Kingdom (UK).

1. INTRODUCTION

1.1 Background

The United Kingdom's desire to establish itself as a global leader in artificial intelligence (AI) is inextricably linked to its commitment to achieve net-zero emissions, resulting in a dual transition reliant on the mutual expansion of technical and energy infrastructures. Al's computing needs, particularly those from data centres, is expected to considerably boost national power usage. Data centres are expected to contribute up to 6% of UK electrical consumption by 2030, up from around 1% currently (Institute Global, 2024). government's objective of expanding public computer capacity by twenty times over the following five years is driving this surge, demanding careful energy strategy to assure grid dependability and sustainability (Parker, 2025).

Recognising this difficulty, the UK government formed the Al Energy Council in April 2025, a cross-sector effort co-chaired by the Technology and Energy Secretaries. The Council's goal is to integrate the nation's ΑI infrastructure development with its green energy goals, focusing on topics including grid modernisation, renewable implementation, the and deployment of AI in the power industry (Parker, 2025). However, the UK has considerable challenges, which include high wholesale power prices, which are among the highest in industrialised nations, and an outdated grid system that requires massive funding to support both increasing Al workloads and larger decarbonisation ambitions (Bousso, 2025).

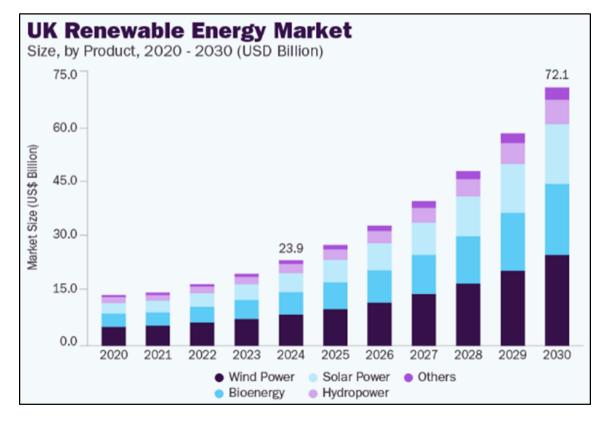


Fig. 1. UK renewable energy market size (Source: Grand View Research, 2024)

Al continues to develop as a key facilitator of renewable enerav advancements effectiveness (Ukoba et al., 2024). It is being used to optimise renewable power, such as enhanced weather prediction for wind and solar energy output, as well as to optimise grid management via statistical analysis and demandresponse mechanisms (Gorini, 2024; Werner, 2025). For example, Al-driven innovations might raise solar and wind systems' load factors by 20%, considerably increasing renewable efficiency (Grantham Research Institute on Climate Change and the Environment, 2025).

Furthermore, initiatives such as Project DREAM demonstrate Al's role in materials research through lowering reliance on rare-earth components in renewable technologies such as wind turbines and electric automobiles, thus enhancing supply chain resilience contributing to the UK's low-carbon transition (UKRI, 2025). Thus, the UK is at a vital juncture, where harnessing AI might expedite renewable energy incorporation and grid upgrade, but effectiveness is contingent on overcoming and economic barriers physical involving concerted policy, funding, and innovation (Loughborough University, 2025). Aim of this study is to investigate AI role in revolution of renewable energy electricity in UK. Purpose of this study is to explore AI impact on improvement of energy storage and grid management with a forecast in the UK's renewable electricity industry.

1.2 Focus of the Report

This study will use scholarly research and complete industry insight to present a Artificial Intelligence review of transformational role in the UK's renewable power sector. The inquiry is around a literature review, which includes a discussion of the UK's particular energy market and policy motivations, such as the Al Council and the objective Energy increasing public computer capacity (Tomás, technical Gov.UK, 2025). Key 2025: assessments will look at how AI may be used to anticipate renewable energy output, optimise smart grids, and improve energy storage efficiency. Further parts will look at Al's role in anticipatory infrastructure maintenance, as well as crucial policy, legal, and ethical aspects in the UK context.

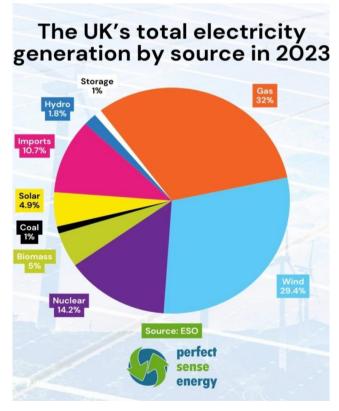


Fig. 2. UK's total electricity generation by source in 2023 (Source: Perfect sense energy, 2024)

1.3 Problem Description

Mamat et al. (2025) provided a complete evaluation of Gen-Al's developing role in enhancing solar and wind scheduling, load prediction, power storage supervision, and smart grid optimisation. This evaluation uses a comparison and synthesis-based technique to examine findings from high-impact papers published between 2023 and 2025. The results show that GAN-based methods minimise root mean square error (RMSE) in solar irradiance 15-20% while dramatically prediction bγ improving spatial-temporal wind simulations. Considering nonlinear circumstances, time-series GAN-LSTM hybrids improve demand prediction accuracy, whilst VAE-driven dispatching models improve energy conservation and curtailment minimisation by 9-12 per cent. The originality of this research resides in outlining Gen-Al's incorporation with digital twins, federated learning, and AI-IoT architectures, allowing for real-time, confidential management of complex energy systems.

Although the UK's renewable energy industry is growing guickly, issues with grid volatility. storage disability and intermittency still exist. Accurate prediction of the demand for renewable production and balance in real time is a challenge for traditional energy management systems, often as a result of an increase in disabilities and operational costs. restrictions increase the system cost and dependence as the UK strives for net-zero emissions by 2050. The forecast provides an increase in accuracy, streamlining operations, increasing storage efficiency, and predicting maintenance with artificial intelligence (AI). Nevertheless, the UK renewable energy systems have not done adequate research on Al's efficiency and incorporation.

1.4 Research Aim

This study emphasises forecasting, grid optimisation, storage efficiency, and operational enhancements to critically analyse how artificial intelligence is transforming renewable power in the UK.

1.5 The objective of the Research

- To assess how AI might improve energy storage, grid management, and forecasting in the UK's renewable electricity industry.
- To evaluate the real-world uses, prospects, and difficulties of implementing Al in

- predictive maintenance and renewable energy operations.
- To evaluate the ethical, legal, and policy ramifications of integrating AI into the UK's renewable energy infrastructure.

2. MATERIALS AND METHODS

2.1 Research Design

Using established scholars, policy and industrial sources, using synthesis and interpretation approaches, this study used a secondary qualitative research strategy (Cheong et al., 2023). Secondary analysis enables a review of the already published materials to detect patterns, intervals and areas of dispute. In the UK, where case studies, pilot projects, and aovernment papers already provide comprehensive data, this method was chosen to catch Artificial Intelligence (AI) and renewable power quickly changing junctions (Qudrat-Ullah, 2025). The subject structure of alignment analysis between design and purpose is ensured by directly declared research objectives.

2.2 Data Sources and Selection

From 2018 to 2025, peer-reviewed research articles, government publications, industry white papers and reliable news sources were the only sources of data used. In addition to the policy papers of the National Grid ESO, OFGEM, and UK government, sources included scholarly literature from Scopus. Web of Science. Science and Google Scholar. To provide useful insight, industry case materials were included, such as a study from Octopus Energy and DeepMind. In the context of the UK, a clear explanation of relevance, forecasting, grid adaptation, storage, or operations in operation, and functioning transparency were the main selection criteria (RAZAK et al., 2025). To preserve the quality, articles without a strong theoretical or empirical foundation were unfit.

2.3 Thematic Analysis Approach

After the aim of the study, a **thematic** analysis was used to synthesise the data (Dufour & Richard, 2019). Investigating how algorithms renew production and balance demand, the first theme will focus on AI in forecasting and grid management. The second theme will examine battery adaptation techniques and system-level integration when analysing AI in energy storage and efficiency. The third theme will focus on

detecting the defect and monitoring the situation when investigating AI in operation and future maintenance. A fourth theme will focus on moral and policy effects, namely on data governance, explanation and regulation. The comparative analysis of the results was made possible by this subject classification, in which the areas of agreement and disagreement were detected throughout the literature.

2.4 Data Analysis and Interpretation

In addition to inductive reporting, the study included an important synthesis. Each subject was examined for intervals, discrepancies and generalities. For example, research highlights the boundaries of a rare dataset in the low-voltage grid in the UK was conducted, with studies claiming excellent accuracy of Al-based predictions. Similarly, with the study of the industrial case, the promises of cost reduction and efficiency were tested, unlike academic critics (Cheong et al., 2023). Technical results were placed within the UK rules structure using policy reports. The study reduced the bias towards optimistic stories by comparing evidence and highlighting areas that require more investigation or policy action.

2.5 Limitations and Reliability

There are built-in boundaries for secondary analysis. First, the results are limited by the width, functionality and dataset of the original authors due to the dependence on the preexisting material. Second, while peer-reviewed research may depend on small experimental datasets that limit generality, corporate claims can increase the benefits of adopting Al. The triangle was used to solve these problems, obtained from various sources (educational, policy and industry) with each subject. The credibility was increased by supporting industrial examples and giving priority to the government, prioritising colleague-review publications major evidence. This multi-layered strategy guarantees that analysis will always be reliable, fair and strongly based in the UK context.

2.6 Theoretical Framework

2.6.1 Theoretical models

Several interrelated theoretical models support the incorporation of AI in the UK's renewable energy sector. Socio-technical transitions theory, notably the Multi-Level Perspective (MLP), offers

a paradigm for understanding how AI functions as a niche innovation upsetting the present regime. aided bv environmental pressures such as environmental policy and This security (Geels, 2019). energy supplemented by complex systems theory, which views the energy infrastructure as a dynamic, nonlinear structure in which AI-driven forecasting and optimisation algorithms improve the stability and incorporation of fluctuating renewables.

Furthermore, the concept of Digital Twinning provides a theoretical framework for developing virtual reproductions of physical assets, allowing for simulation, real-time evaluation, and proactive management (Yoon, 2023). These models provide the basic reasoning for using AI to traverse the transition, maximising both technical deployment and its compatibility with socioeconomic and policy purposes relevant to the UK environment.

2.7 Al and the UK Renewable Energy Landscape

The UK's renewable energy environment is experiencing a fundamental upheaval, caused by the dual requirements of attaining net-zero emissions by 2050 and using artificial intelligence (AI) to improve energy infrastructure. This synergy is crucial since the UK government wants to establish the nation as a global AI leader while also moving to an economy with minimal carbon emissions. However, this objective is laden with difficulties, including high energy prices, grid limits, and increasing processing needs. The formation of the AI Energy Council in April 2025 is the government's deliberate response to these concerns. This cross-sector project, chaired by the Technology and Energy Secretaries, aims to match the UK's compute resource development—a twentyfold in five years—with efficient energy management (Parker, 2025; Patsavellas, 2025).

A key challenge is the energy demand for AI and data centres, which are expected to treble their power use by 2035, which could reach 72 TWh per year. This spike threatens to overburden the UK's outdated electrical system and raise wholesale power costs, which are currently among the highest in major nations (Bousso, 2025). To address this, the current government is considering measures to release more than 400GW of grid capacity and is committing £8.9 billion in grid development, the greatest since the 1960s (Parker, 2025). These steps are

necessary to handle both Al-driven consumption and renewable incorporation; however, they must be combined with Al-driven approaches to improve grid reliability and effectiveness.

Artificial intelligence is already being used to improve the production of renewable energy and delivery. For example, initiatives sponsored by the UK's AI for Decarbonisation Innovation Programme use AI to improve solar power prediction, wind turbine location, and energy storage facilities (Von Henning, Additionally, Project DREAM, a cooperation between Materials Nexus and the University of Sheffield, uses AI to create rare-earth-free magnetic components for wind turbines and electric cars, lowering supply chain reliance and environmental impact (UKRI, 2025). These developments are critical for raising the load factor of renewables and guaranteeing grid resilience.

However, the combination of AI with renewable energy raises policy and ethical questions. The AI Energy Council highlights the necessity for "safe and secure implementation of AI throughout the energy system," underlining the significance of regulatory mechanisms to prevent industry exploitation and promote responsible AI use (Parker, 2025). Furthermore, handling water resources for AI data centre cooling requirements, especially in water-stressed areas

South-eastern England. necessitates comprehensive planning to minimise public environmental opposition and damage (Patsavellas, 2025). The UK's Al Opportunities Action Plan emphasises the importance of AI in promoting carbon reduction across industries, but its success is dependent on combating skills constraints and encouraging collaboration between sectors (Clifford, 2025).

2.8 Al in Renewable Energy Forecasting

There have been several studies regarding the use of AI in renewable energy forecasting. Chukkala et al. (2025) analysed how Al and machine learning can predict solar and wind energy production. Key research covered in this literature highlights progress and challenges in this subject. The methodology section describes the AI approaches employed in energy forecasting, emphasising their accuracy and performance. The findings indicate that AI can increase renewable energy dependability, hence supporting energy stability and informing policy decisions. The encouraging findings reveal that issues with data quality and algorithmic openness remain unaddressed. Governments should prioritise funding open-source dataset creation and creating standardised formats for energy renewable statistics. These developments will make it possible to create more resilient and generalisable Al models.

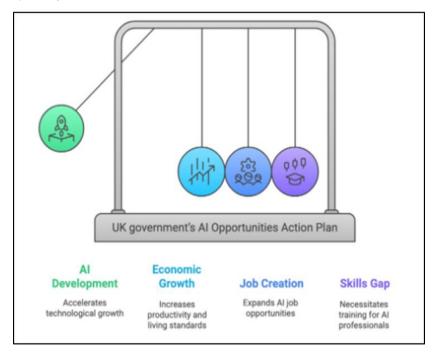


Fig. 3. UK's Al opportunities action plan (Source: Chief Disruptor, 2025)

Sarkar (2025) stated that because renewable sources are unpredictable enerav fluctuating, accurate forecasting of renewable energy remains challenging. As a result, energy system engineers have issues in ensuring the grid's stability and reliability. Machine learning and deep learning-based forecasting models for demand and renewable energy can assist utility companies in effectively managing the system. Although there is certainly space improvement, the survey conducted in this study reveals that the most sophisticated ML and DLbased energy forecasting techniques on the market today are effective. SVMs and XGBoost models have been proven to be among the most successful machine learning methods predicting renewable energy. CNN-LSTM deep learning methods have also proven effective. The Bi-LSTM model can effectively anticipate both load and renewable energy.

2.9 Case Study: EDF Energy's Wind Turbine Optimization

EDF Energy uses AI to position wind turbines for maximum efficiency, increasing energy capture while minimizing environmental impact.

2.10 Al in Smart Grids and Grid Optimisation

There is a widespread agreement in UK literature that AI is playing an important role in balancing a grid with rapidly expanded variable renewable sources. According to recent state-of-the-art Artificial Intelligence reviews. (AI) "coordination layer" that facilitates optimal congestion management economic remittance among market actors and distributes energy resources (DER). These tasks are faster and more accurate than rules-based or purely statistical energy management systems (EMS) (Judge et al., 2024). Three capabilities have been identified by scholars: detecting discrepancies for reliability; real-time adaptation for dispatch and flexible procurement, and shortterm forecast for generation and demand. Various surveys, yet deep neural networks and reinforcement learning (RL) have dominated state-of-the-art adaptation research. interpretation. and data provenance deployment in regulated markets, which are still weak points (Balamurugan et al., 2025).

This research direction is rapidly reflected by British officials and system operators. Demand flexibility service (DFS) from the National Grid

ESO has operated consumer-side flexibility on a scale, proving that automated portfolio control and data-operated targeting can reduce the peak demand. The 20222-2023 DFS season showed that participants from domestic-level assets can get sufficient system price by reducing more than 3.3 GWH peak demand in 22 events with 1.6 million participants (Ofgem, 2024). A future digital infrastructure" "flexibility is implicated in the recent consultation and advice of orchestration, indicating that Al-enabled asset registration, disposal, and verification will be required to quickly open the DER participation. The consensus of scholars is also supported by industry implementation (Ofgem, 2024). In a large-scale seller case study and trade press, Octopus Energy's Kraken platform takes advantage of machine learning to manage millions of customer accounts for dynamic pricing (Kraken, 2016).

There are still points of disagreement. Initially, many assessments highlight how data-limited deep teaching models can demonstrate opaque behaviour in the distribution network poorly or with non-stable behaviour, which is specific to the low-voltage grid in the United Kingdom. It encourages hybrid methods (digital twins, physics-informed machine learning), unlike the "pure" black-box model (SaberiKamarposhti et al., 2024). Bibliometric analysis says that although the number of publications has increased rapidly, there is a lack of verification on high-quality UK datasets, and models cannot be trained on continental or North American networks. Despite the exploration of guards, clarification, auditability, and Ofgem cybersecurity measures for Al-assisted grid control, it is not equally said to create a regulatory and moral vacuum (SaberiKamarposhti et al., 2024).

2.11 AI in Energy Storage and Efficiency

Most of the literature is that artificial intelligence (AI) increases the technical and financial performance of battery energy storage systems (BES) in two ways: smooth renewal, forecast of charging/discharge for mediation prices, and to overcome obstacles; And Health-conscious management that increases battery life by estimating state-of-charge (SOC) and state-ofunder uncertainty health (SOH) (SaberiKamarposhti et al., 2024). Compared to the heuristic baseline, the recent evaluation of catalogue optimisation framework-ML Surrogates, RL-based schedule, and the model's prediction improved with metahierarchies, resulting in control reports of high revenue and low cycling. However, they also take precautions that accurate decline models and market access rules are necessary for real-world benefits; Otherwise, AI can "over-optimise" for short-term benefits by accelerating wear (Talebi et al., 2024).

Regarding diagnostics, recent studies suggest that the Al-based SoC/SoH estimate is quickly advancing, with intensive teaching architecture capturing non-linear electrochemical dynamics. where equivalent-circuit models are reduced (Mehraj et al., 2025). Without the requirement of hardware modifications, this technology can increase usable capacity by stabilising control policies and reducing safety margins. The defect, which is repeatedly mentioned, is a dataset bias: models developed using lab-grade data cannot translate to field settings with temperature fluctuations and calendar ageing (Mehraj et al., 2025). It is a particularly serious problem for UK storage that is installed behind the meter. Similar trends are shown by the thermal energy storage (TES) and complementary research on systemlevel efficiency: Al design inspires space exploration and control, but adoption is still interrupted by transparency and verification.

The Al-enabled storage interacts with flexibility markets at the system level. By placing a battery before the possibility of events and strategically pricing increases or obstruction, the DFS and related projects of the UK provide price currents that may benefit from Al. Kraken/Octopus portfolio-level optimisation industry provides case proof that coordinates residential batteries with dynamic rates and translates micro-level forecasts into macro-level peak shaving (NESO, 2022). This supports scholars' claims that storage is integrated into the A-orchestrated ecosystem, contrary to acting as individual assets, resulting in the greatest efficiency increases.

At the stage of maturity of AI for decline-comprehensive adaptation, there is still controversy. While some studies show that strong learning of long-horizon wear dynamics is obstructed by ownership cell chemistry and rare failure data, other RL and hybrids provide an optimistic approach to ML-physics models. Explainable AI (XAI) is a methodical proposal to address this trust gap, although currently commercial BESS have some real examples (Song et al., 2024). A second warning is added

by policy literature: Al-unoriented storage can focus the market dominance with a small number of integrated platforms vertically in the absence of transparent performance reporting and interoperable data standards. It seems that this threat is accepted, but has not yet been addressed based on the UK officials' efforts to create the infrastructure of digital flexibility (Coccato et al., 2025).

2.12 Al in Operations and Predictive Maintenance

By identifying early issues before a thresholdbased system, AI is usually thought to reduce low outage rates and O&M costs in wind and solar operations. A review of wind power applications shows that deep learning and hybrid models, which often include SCADA and vibration data, perform well in blade damage, diagnosis of gearbox bearing defects and detect power-cycle discrepancies (Moshtaghi et al., 2025). High precision/recall and fewer false alarms are frequent improvements; However, the author disagrees on external validity: trained models on a farm or turbine class may not always move, making it more difficult to roll into various fleets in the UK. The importance of multimodal sensing is the second area of agreement (Moshtaghi et al., 2025). Research that combines supervisory data, hearing signals and thermal images performs better than single-stream models, especially for unusual events. However, it brings governance and cost challenges, such as data ownership, privacy and cyber-risk management, which echo in the literature on the smart grid. To keep engineers at the centre of the decision, many systematic reviews now include "human-in-the-loop" procedures that use XAI to create fault attributions auditable (Okafor et al., 2025). The UK's regulated asset base and security culture make the pre-approach more possible in the short term. This condition is opposite to more optimistic papers that support highly autonomous maintenance pipelines. A new strength in the UK is the maintenance of the weather. Short prophecies of wind, rain, and temperature-the failure of people who run the risk-razing models and access planning (e.g., vessel windows for offshore wind) are better by the Machine-learning-based numerical weather, better by the Met Office Research (eg. FastNet graph Neural Network). assessment, in which the benefits of the forecast and the boundary evaluation models of the forecasts of the pre-climps and the boundary assessment models (Metoffice, 2025). It should

be weighed against accuracy. Although they are not a journal publication, industry examples provide a reliable operating background. Google DeepMind suggests that learning-based adaptation can result in significant O&M in energy-intensive features by reporting a 40% decrease in cooling energy in data centres using Al control (Evans and Gao, 2016). Even though the asset class is different, the mechanism-loop control using existing sensor data has been discontinued, closely monitoring the wind/solar plant control difficulties. Although seller-reported numbers require independent replication, as critics indicate correctly, they show the maximum level of Al-competent operational efficiency that is targeted for the UK operators.

2.13 Predictive Maintenance and Asset Optimization

2.13.1 Al for Proactive Infrastructure Health

Renewable energy assets, such as wind farms and solar arrays, require constant monitoring. Al enables:

- Early Fault Detection: Sensors and Al analytics identify wear-and-tear before failures occur, reducing downtime.
- Cost-Effective Repairs: Predictive maintenance cuts operational expenses by up to 35%, as seen in North Sea decommissioning projects.

2.14 Robotics and Drones for Inspections

Al-powered drones inspect solar panels and wind turbines, detecting defects faster than manual methods.

2.15 Policy and Market Integration

2.15.1 Al in energy market reforms

The UK's Review of Electricity Market Arrangements (REMA) will leverage AI to:

- Optimize Energy Trading: Al algorithms match renewable supply with demand in real-time markets, improving price efficiency.
- Support Contracts for Difference (CfD) Auctions: Al models assess project viability, ensuring fair pricing and reducing subsidy risks.

2.16 Aligning Al and Clean Energy Goals

The Al Energy Council, chaired by Energy Secretary Ed Miliband, is exploring how Al can

support the UK's clean energy transition while meeting rising demand from data centres . Key initiatives include:

- Prioritizing Renewable-Powered Data Centres: Al helps match data centre demand with renewable generation, reducing reliance on fossil backups.
- Water and Resource Management: Al minimizes water usage in cooling systems, addressing sustainability concerns.

2.17 Challenges and Future Outlook

Barriers to Implementation

- High Energy Costs: The UK's electricity prices, among the highest in developed nations, could hinder Al-driven solutions.
- Data Privacy and Cybersecurity: Protecting grid data from breaches is crucial as AI adoption grows.
- Workforce Readiness: Upskilling is needed to manage Al-integrated systems

3. FINDINGS AND DISCUSSION

According to the findings, artificial intelligence operational effectiveness improves renewable energy incorporation in the UK power sector. Al-driven maintenance planning lowers operational expenses by up to 30% while increasing accessibility to equipment by 20%, thus enhancing the profitability of renewable assets such as wind turbines and solar energy (Cooper, 2024; O'Brien, systems Additionally, artificial intelligence optimises the administration of the grid through proficient forecasting and real-time adjustment, which is critical for dealing with renewable variations and the increasing energy requirements of data centres, which are expected to consume 72 TWh per year by 2030 (Hodgkinson & Jackson, 2025; Global. 2025). However. Institute advantages are balanced by significant hurdles, such as high wholesale power prices, grid upgrading expenses, and data quality concerns that impede Al model generalisability and transparency (Bousso, 2025; Hodgkinson and Jackson, 2025).

The revolutionary potential of AI in the UK's renewable energy sector is clear, but its deployment faces substantial technological, economic, and legal challenges. In principle, AI increases renewable forecasting precision by lowering root mean square error (RMSE) in solar

irradiance estimates by 15-20%, as well as grid stability through real-time demand response techniques and storage efficiency (Cooper, 2024; O'Brien, 2025). However, the capacity for growth of these solutions is limited by data constraints; AI models frequently fail to migrate across various assets or areas due to variable quality of information and a lack of consistent datasets (Hodgkinson and Jackson, 2025; O'Brien, 2025).

Economically, while Al-driven efficiency can reduce operating costs, the initial expenditures for grid upgrading and AI infrastructure are significant. The UK's ambitious ambition to double public compute capacity requires about £8.9 billion in grid improvements (Parker, 2025), amidst already high energy prices that threaten industrial productivity (Bousso, 2025). Regulatory and ethical factors complicate the situation. The Al Energy Council highlights the importance of "safe and secure" AI deployment (Government of the UK. 2025: Parker. 2025), which necessitates frameworks that provide openness, responsibility, and public confidence, notably in data protection and algorithmic decision-making (GOV.UK, 2023; ICO, 2023).

Furthermore, environmental implications, such as water consumption for data centre cooling requirements, must be handled to minimise public outrage and ecological damage (Parker, 2025; Hodgkinson and Jackson, 2025). Policy alignment is crucial; the UK's pro-innovation AI regulatory strategy (GOV.UK, 2023) must be connected with energy policies to encourage investments while energy emissions. Worldwide, the UK's capacity to use Al for green development is dependent on collaboration for compatible standards and technology (Institute Global, 2025). Finally, reaching Al's maximum potential in the renewable industry requires concerted efforts to close data infrastructure gaps, ensure ethical oversight, and secure long-term funding in integrating Al-driven demand for power with decarbonisation targets.

The incorporation of AI into the UK's renewable energy sector needs significant infrastructural investment and strong legislative frameworks. The rising energy demand from AI compute and data storage facilities threatens to strain an already ageing infrastructure, possibly undercutting decarbonisation targets unless deliberate investments in grid upgrading and renewable production are emphasised (Parker, 2025).

Technically, the Al Energy Council was born at the right time.

In the UK, the Al Energy Council, supervised by Energy Secretary Ed Miliband, has a mandate that is both bold and highly relevant to the challenges and results outlined in this study. They understand UK's electricity grid must evolve to accommodate increasing renewable energy penetration. Al can optimize grid operations by:

- Balancing Supply and Demand in Real-Time: Al algorithms analyze data from smart meters, weather forecasts, and generation patterns to dynamically adjust power flows, reducing reliance on fossilfuel backup plants.
- Reducing Energy Waste: Al detects inefficiencies in transmission and distribution, minimizing losses and improving overall system performance.
- Facilitating Decentralized Energy Systems:
 Al enables microgrids and distributed energy resources (DERs) to integrate seamlessly, ensuring local resilience and reducing strain on the national grid

3.1 Overcoming Grid Connection Bottlenecks

The UK faces a backlog in grid connections for renewable projects, delaying clean energy deployment. Al can:

Optimize Connection Queues: Predictive models prioritize projects based on readiness and impact, accelerating approvals.

Support Grid Expansion Planning: Al analyzes future demand growth from Al-driven data centres and electric vehicles, guiding infrastructure investments.

Al is a game-changer for renewable energy delivery in the UK, offering solutions to grid congestion, forecasting inaccuracies, storage challenges. By harnessing potential, the UK can achieve a cleaner, more resilient energy system while maintaining its leadership in both AI and climate action. depends on strategic However, success investments, regulatory support, and crosssector collaboration. With the right policies, Al and renewables can power the UK's sustainable future.

3.2 The Path Forward

The UK must:

- Scale Al Pilot Projects: Expand successful trials like EDF's wind optimization nationwide.
- Invest in Grid Modernization: Deploy Al alongside smart grid upgrades under the Great Grid Upgrade initiative.
- Foster Public-Private Collaboration: Partnerships with tech firms (e.g., Google, Microsoft) can accelerate innovation.
- Engage efficient project managers with the right blend of management, engineering, renewable energy expertise and Al systems integration.

4. CONCLUSION

This research shows that artificial intelligence may alter the UK's renewable energy business by improving precision in forecasting, optimising grid management, increasing storage efficiency, and enabling predictive maintenance. The synergistic interaction between Al progress and decarbonisation targets represents an important potential to hasten the switch to a net-zero economy. However, realising this promise requires overcoming significant infrastructural. economic. and regulatory barriers. pressures simultaneous of increasing computing capacity and improving the energy supply need significant investment in grid modernisation, as well as a clear legislative framework that assures ethical and secure deployment. The use of academic literature and industry reports has helped in recognising the key aspects related to the focus of this research. Finally, the UK's desire to be a leader in AI and renewable energy will be decided by its capacity to stimulate innovation, enable collaborative governance, and effectively link technology advances with long-term environmental goals. Policymakers need to develop strategies that can help in overcoming the obstacles and utilise AI effectively.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

I, Charles Nwaneri Ekeh, hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

ACKNOWLEDGEMENT

I thank Dr. Mohammad Shahidul Islam and Dr. Edward Lambert of Atlantic International University (AIU) for their immense contributions and inputs in this research as academic and publication advisors. Mr. Andrew encouraged me to write more articles — thank vou sir. I'm grateful to those who responded to questionnaires including Tochukwu, Ekene, Edozie and Chidiebere. I cherish the academic investment from HS Publishing and the Applied Sciences Research Periodicals. I also extend my appreciation to Dr. Anuri Chidiebere-Nduka and Mrs. Chioma Ohameje-Okpoechi. I'm grateful to Advanced Engineering UK, Solar & Storage UK, Engineering Integrity Society UK. Renewable Energy Integrity Association Nigeria.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

Balamurugan, M., Narayanan, K., Raghu, N., Arjun Kumar, G. B., & Trupti, V. N, (2025).Role of artificial intelligence in smart grid–a mini review.Frontiers in Artificial Intelligence, 8, p.1551661.

https://www.frontiersin.org/journals/artificial

intelligence/articles/10.3389/frai.2025.1551 661/full

Bousso, R. (2025). Britain's AI hopes face harsh reality of high electricity costs. *Reuters*. [online] 7 Aug.

Available at:

https://www.reuters.com/business/energy/britains-ai-hopes-face-harsh-reality-high-electricity-costs-2025-08-07/.

- Cheong, H. I., Lyons, A., Houghton, R. & (2023).Majumdar, Α., Secondary qualitative research methodology using online data within the context of social International Journal sciences. of Qualitative Methods, 22, p.16094069231180160. https://journals.sagepub.com/doi/abs/10.11
 - https://journals.sagepub.com/doi/abs/10.1177/16094069231180160
- Chief Disruptor (2025). 2025 kicked off with a bang with a significant policy announcement from the UK government on 13 January, announcing the launch of the 'AI Opportunities Action Plan', a 'blueprint to turbocharge AI development in

- the UK. Compiled by tech entrepreneur Matt Clifford, this ambitious plan to ramp up AI d. [online] Linkedin.com.
- Available at: https://www.linkedin.com/pulse/chiefdisruptor-february-insights-impactmember-perspectives-egn4e/ [Accessed 27 Aug. 2025].
- Chukkala, S., Vadla, S. K., & Kumar, R. Renewable (2025).Enhancing Forecasting Through Artificial Intelligence: Techniques, Applications, and Future Prospects. International Journal Research Publication and Reviews, 6(2), pp.4837-4842.doi:https://doi.org/10.55248/gengpi.6.
- Clifford, M. (2025). Al Opportunities Action Plan. [online] GOV.UK. Available https://www.gov.uk/government/publication s/ai-opportunities-action-plan.

0225.1034.

Coccato, S., Barhmi, K., Lampropoulos, I., Golroodbari, S. & van Sark, W., (2025).A Review of Battery Energy Storage Optimization in the Built

> Environment.Batteries, 11(5), p.179. https://www.mdpi.com/2313-0105/11/5/179

- Cooper, K. (2024). Al 'revolutionising' predictive maintenance as it 'gains traction in renewables'. [online] Power Technology. at: https://www.powertechnology.com/news/ai-revolutionisingpredictive-maintenance-as-it-gainstraction-in-renewables/.
- Dufour, I. F., & Richard, M. C., (2019). Theorizing qualitative from secondary data: comparison of two data analysis methods.Cogent Education, 6(1),p.1690265. https://www.tandfonline.com/doi/abs/10.10

80/2331186X.2019.1690265

Evans, R. & Gao, J. (2016). DeepMind Al reduces google data centre cooling bill by 40%. [online] Google DeepMind. Available https://deepmind.google/discover/blog/dee pmind-ai-reduces-google-data-centre-

cooling-bill-by-40/ [Accessed 20 Aug. 2025].

Geels, W., (2019).Socio-technical transitions to sustainability: a review of criticisms and elaborations of the Multi-Level Perspective. Current opinion in environmental sustainability, 39, pp.187-201.https://pure.manchester.ac.uk/ws/files/

- 123070758/Geels COSUST paper AUTH OR ACCEPTED MANUSCRIPT.docx
- Gorini, D. (2024). Renewable energy and AI: the dvnamic duo saving the world, one watt at time! [online] Available https://www.techuk.org/resource/renewabl e-energy-and-ai-the-dynamic-duo-savingthe-world-one-watt-at-a-time.html.
- **GOV.UK** (2023). Apro-innovation Approach to AI Regulation. [online] GOV.UK. Available https://www.gov.uk/government/publication s/ai-regulation-a-pro-innovationapproach/white-paper.
- Gov.Uk (2025). Prime Minister sets out blueprint to turbocharge AI. [online] GOV.UK. Available https://www.gov.uk/government/news/prim e-minister-sets-out-blueprint-toturbocharge-ai.
- Government of the UK (2025). Al Energy Council to ensure UK's energy infrastructure ready ΑI revolution. [online] GOV.UK. Available https://www.gov.uk/government/news/aienergy-council-to-ensure-uks-energyinfrastructure-ready-for-ai-revolution.
- Grand View Research (2024). UK Renewable Energy Market Size | Industry Report, www.grandviewresearch.com. Available at: https://www.grandviewresearch.com/indust ry-analysis/uk-renewable-energy-marketreport.
- Grantham Research Institute on climate change and the environment. (2025). Green and intelligent: the role of AI in the climate transition - Grantham Research Institute on climate change and the environment. Available https://www.lse.ac.uk/granthaminstitute/pu blication/green-and-intelligent-the-role-ofai-in-the-climate-transition/.
- Hodgkinson, I. R. & Jackson, T. (2025). How the UK's plans for AI could derail net zero the numbers explained. [online] The Conversation. Available at: https://theconversation.com/how-the-uksplans-for-ai-could-derail-net-zero-thenumbers-explained-247397.
- ICO (2023). Explaining decisions made with Al. [online] ico.org.uk. Available https://ico.org.uk/for-organisations/uk-gdprguidance-and-resources/artificialintelligence/explaining-decisions-madewith-artificial-intelligence/.

2025].

- Institute Global. (2024). Greening AI: How the UK Can Power the Artificial-Intelligence Era. [online] Available at: https://institute.global/insights/climate-and-energy/greening-ai-how-the-uk-can-power-the-artificial-intelligence-era.
- Institute Global. (2025). AI and Clean Energy: How Governments Can Unlock the Power of the 'Twin Transitions'. [online] Available at: https://institute.global/insights/climate-and-energy/ai-and-clean-energy-how-governments-can-unlock-the-power-of-the-twin-transitions.
- Judge, M. A., Franzitta, V., Curto, D., Guercio, A., Cirrincione, G. & Khattak, H. A., (2024). A comprehensive review of artificial intelligence approaches for smart grid integration and optimization. Energy Conversion and Management: X, 24, p.100724.
 - https://www.sciencedirect.com/science/article/pii/S2590174524002022
- Kraken (2016). Case Study: Octopus Energy | Kraken. [online] Kraken.tech. Available at: https://kraken.tech/casestudies/octopus-energy [Accessed 25 Aug. 2025].
- Loughborough University. (2025). How the UK's plans for AI could derail net zero the numbers explained. [online] Available at: https://www.lboro.ac.uk/media-centre/press-releases/2025/january/how-the-uks-plans-for-ai-could-derail-net-zero/.
- Mamat, R., Ghazali, M. F., Basrawi, F. & Rosdi, S. M. (2025).Emerging role of generative Al in renewable energy forecasting and system optimization. Sustainable Chemistry for Climate Action, [online] 7, p.100099.

 DOI:https://doi.org/10.1016/j.scca.2025.10
- Mehraj, N., Mateu, C., Bastida, H., Li, Y., Ding, Y., Sciacovelli, A. and Cabeza, L.F., (2025). Artificial intelligence in state of charge estimation: Pioneering approaches across energy storage systems. Energy, p.138166.

0099.

Metoffice

https://www.sciencedirect.com/science/article/pii/S0360544225038083

Intelligence

Numerical Weather Prediction. [online] Met Office.

Available at: https://www.metoffice.gov.uk/research/app roach/collaboration/artificial-intelligence-for-numerical-weather-prediction

(2025).Artificial

[Accessed 12 Aug. 2025].

- Moshtaghi, P., Hajialigol, N. & Rafiei, B., (2025). A comprehensive review of artificial intelligence applications in wind energy power generation. Sustainable Futures, p.100638. https://www.sciencedirect.com/science/article/pii/S2666188825002060
- NESO (2022). Demand Flexibility Service delivers electricity to power 10 million households. | National Energy System Operator. [online] Neso.energy. Available at: https://www.neso.energy/news/demand-flexibility-service-delivers-electricity-power-

10-million-households [Accessed 8 Aug.

- O'Brien, S. (2025). Al-based predictive maintenance becoming key in energy sector Facilities Management Forum | Forum Events. [online] Facilities Management Forum | Forum Events. Available at: https://facilitiesmanagementforum.co.uk/briefing/ai-based-predictive-maintenance-becoming-key-in-energy-sector/ [Accessed 27 Aug. 2025].
- Ofgem (2024).Flexibility Market Asset Registration. [online] Ofgem. Available at: https://www.ofgem.gov.uk/consultation/flexibility-market-asset-registration [Accessed 18 Aug. 2025].
- Okafor, C. J., Adeniran, A. A. & Adeniran, A. O., (2025). Machine Learning and AI for Predictive Maintenance and Grid Integration of Wind Farms.Soft Computing Fusion with Applications, 2(2), pp.62-73. https://scfa.reapress.com/journal/article/vie w/53
- Parker, K. (2025). The UKs AI Energy Council Powering the Future of Artificial Intelligence Through Strategic Energy PI Bird & Bird. [online]

 Available at: https://www.twobirds.com/en/insights/2025 /uk/the-uks-ai-energy-council-powering-the-future-of-artificial-intelligence-through-strategic-energy-pl [Accessed 26 Aug. 2025].
- Patsavellas, J. (2025). Available at: https://www.theiet.org/media/press-releases/press-releases-2025/press-releases-2025-july-september/19-august-2025-expert-insight-ai-data-centres-and-the-uk-s-twin-crunch-energy-and-water [Accessed 28 Aug. 2025].
- Perfect sense energy, 2024.Solar Energy Statistics 2024: UK and Beyond

for

- .https://perfectsenseenergy.com/solarenergy-statistics/
- Qudrat-Ullah, H., (2025).A Thematic Review of Al and ML in Sustainable Energy Policies for Developing Nations. Energies, 18(9), p.2239.https://www.mdpi.com/1996-1073/18/9/2239
- Razak, T. R., Ismail, M. H., Darus, M. Y., Jarimi, H. and SU, Y., Artificial Intelligence in Renewable Energy: A Systematic Review of Trends in Solar, Wind, and Smart Grid Applications. Reviews in Sustainability, 1, p.1.https://sustainabilityjournal.com/articles/6/files/688cb180e78a2 .pdf
- SaberiKamarposhti, M., Kamyab, H., Krishnan, S., Yusuf, M., Rezania, S., Chelliapan, S. and Khorami, M., (2024). A comprehensive Al-enhanced smart of integration for hydrogen energy: Advances, challenges, and future prospects. International Journal of Hydrogen Energy, 67, pp.1009-1025. https://www.sciencedirect.com/science/arti
 - cle/pii/S0360319924001320
- Sarkar, K. (2025). Load and Renewable Energy Forecasting Using Deep Learning for Grid (Cornell Stability. arXiv University). DOI:https://doi.org/10.48550/arxiv.2501.13 412.
- Song, H., Liu, C., Amani, A.M., Gu, M., Jalili, M., Meegahapola, L., Yu, X. & Dickeson, G., (2024). Smart optimization in battery energy storage systems: An overview. Energy and AI, 17, p.100378. https://www.sciencedirect.com/science/arti cle/pii/S2666546824000442
- Talebi, S. & Aly, H.H., (2024), January. A review energy storage system battery optimization: Current state-Of-the-art and future trends. In 2024 International Conference on Green Energy, Computing

- and Sustainable Technology (GECOST) (pp. 116-120), IEEE. https://ieeexplore.ieee.org/abstract/docum ent/10474701/
- Tomás, J.P. (2025). UK's new Al Energy Council targets 20x compute growth by 2030. [online] RCR Wireless News. Available at: https://www.rcrwireless.com/20250409/aiml/uk-launches-ai-energy-council.
- Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T.-C., & Madvira, D. M. (2024). Optimizing energy renewable systems through artificial intelligence: Review and future prospects. Energy & Environment, 35(7). https://doi.org/10.1177/0958305X2412562 93.
- UKRI.(2025). Al-powered research development for the energy sector. [online] Available at: https://www.ukri.org/who-weare/how-we-are-doing/research-outcomesand-impact/innovate-uk/ai-poweredresearch-and-development-for-the-energysector/ [Accessed 27 Aug. 2025].
- Henning, O. (2024). UK government Von allocates £1.7 million to AI renewables projects. [online] Available at: https://www.solarpowerportal.co.uk/solartechnology/uk-government-allocates-1-7million-to-ai-renewables-projects [Accessed 28 Aug. 2025].
- Werner, J. (2025). Al and Energy Security: A Path to Efficiency and Sustainability in the UK. [online] BABL AI. Available at: https://babl.ai/ai-and-energy-security-apath-to-efficiency-and-sustainability-in-theuk/.
- Yoon, S. (2023). Building digital twinning: Data, information, and models. Journal of Engineering, 76, Buildina p.107021. https://www.sciencedirect.com/science/arti cle/pii/S2352710223012007

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Peer-review history: The peer review history for this paper can be accessed here: https://pr.sdiarticle5.com/review-history/145727

[©] Copyright (2025): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.