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ABSTRACT 
 

This study aim is to investigate the properties of selected fourth order Runge-Kutta algorithms. Fifty-
five versions of fourth order Runge-Kutta (RK_1, RK_2, RK_3 …, RK_55) methods; inclusive of the 
classical fourth order RK version, were selected. Thereafter, these versions were used to simulate, 
with a constant and adaptive step-size algorithm, the dynamics of the harmonically excited Duffing 
Oscillator over a range of parameters and initial conditions. The simulation was carried out with a 
FORTRAN program developed and validated by comparing the program generated Poincaré section 
with literature standard. The number of successive steps taken between start and end of simulation 
periods was recorded for each simulation run. A total of 91809 simulations were run. The number of 
successive steps taken between start and end of simulation periods show that significant variations 
exists among different versions of the same Runge-Kutta order used for seeking solution of Duffing 
oscillator dynamics. Ranking results by the number of successive steps showed that RK_55 is not 
the fastest version available, despite its popularity, as other versions including RK_17, RK_2, 
RK_14, RK_20, and RK_8 outperformed it. Furthermore, the version performance was observed to 
be highly dependent on the excitation frequency, but not on initial conditions. 
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NOMENCLATURES 
 

�̈ :acceleration of the system  ℎ :step size 
�̇ :velocity of the system  �� :local truncation error 
� :displacement of the system  �_� :system number 
� :damping constant  � :increment function 
� :linear stiffness coefficient  � :number of stages of the RK method 
� :non-linear stiffness coefficient  �� :vector of the quadrature weights 
�� :forcing amplitude  �� :vector of derivatives (slopes) 
� :excitation (angular) frequency  �� :vector of nodes 
� :time     

��� 
:matrix indicating dependence of the stages  
on the derivatives found at other stages 

 

1. INTRODUCTION 
 
Ordinary differential equations play a 
fundamental role in engineering as many 
physical phenomena are best formulated 
mathematically in terms of their rate of change. 
Solutions of these governing equations may be 
by Analytical (exact) or Numerical/Approximate 
methods. Ordinary differential equations may 
also be classified into linear and non-linear 
equations [1]. Non-linear science is a field of 
continuously growing interest to scientists, 
engineers and researchers, due to its usefulness 
in diverse fields such as Physics, Engineering, 
Biomedicine, etc. [2]. Numerical methods are of 
utmost importance to researchers as they can be 
used to solve non-linear model equations of 
interest, which generally do not possess 
analytical methods of solution [3]. 
 
The Duffing Oscillator (or Duffing Equation) is a 
non-linear second order ordinary differential 
equation named after Georg Duffing (1861-
1944). Although George Duffing studied the free 
and forced harmonic vibration of an oscillator, 
which possessed quadratic and cubic non-
linearity in the stiffness force, the term ‘Duffing 
equation’ is now used for any equation of an 
oscillator with a cubic stiffness term, with or 
without different types of damping or excitation 
[4]. This permits the equation to be used to 
model a wide range of linear and non-linear, 
physical and engineering systems. 
Consequently, the Duffing equation is one of the 
most intensively studied systems in dynamics. 
[2]. Examples of these systems include the 
equations of motion of plates, shells, woofers, 
optical fibers, prisms in fluid flow, flight motor of 
an insect, electrical circuit and pendulum. 
Another example of such systems is the vibration 
of beams [5]. In terms of solution of the Duffing 

equation, the exact solution of the undamped, 
unforced Duffing equation is well known in 
Literature [6], however, for other forms of the 
equation, approximate or numerical methods of 
solution are required. For example, Runge-Kutta 
(fourth order) algorithms were used by [2,7] to 
obtain bifurcation diagrams, very useful tools for 
the investigation of the dynamics, of the 
harmonically excited and forced Duffing 
oscillator. 
 
Several numerical methods have been 
developed for the solutions of ordinary differential 
equations. Among these methods, the Runge-
Kutta (RK) family of methods is distinguished, as 
evident in its widespread use and extensive 
research [1,8–11]. Runge-Kutta methods are a 
family of implicit and explicit iterative methods 
(including Euler’s and Heun’s method) used in 
temporal and spatial discretization for the 
approximate solutions of ordinary differential 
equations [3]. An important factor of Runge-Kutta 
methods is the order of the method. There has 
been a preferred development of higher order 
Runge-Kutta methods over the investigation of 
other versions within a specific order. One 
possible explanation of this is because, as 
Butcher [9] refers, higher order methods are able 
to provide, with a higher accuracy and relatively 
lower computational cost, the approximations of 
solutions to differential equations than lower 
order methods. Butcher [8,9,12] reported that 
explicit methods of orders one through ten have 
been developed. Tsitouras [13] constructed an 
explicit Runge-Kutta pair of orders 9 and 8. 
Ketcheson and Waheed [14] included a twelfth 
order method, (developed by Ono) in their study, 
and thereby confirm the existence of such order 
method. According to Hairer et al. [15], much 
research has been undertaken to choose the 
best versions from the infinite versions of fourth 
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order RK methods. An example of which is the 
popular, albeit obsolete, method of Gill (1951), 
which selected a set of RK coefficients that 
required fewer space in the computer memory. 
However, a review of literature for the existence 
of fourth order versions, revealed a relatively low 
number existed [1,3,12,16–20] of which, the          
classical fourth order RK method is the most 
used version. 
  
First, despite the fact that the error term of all 
versions of a specific order of Runge-Kutta 
method have the same order (�(ℎ�)), the actual 
value of the error is dependent on the 
coefficients of the version of the method used. 
Hence, it is possible to select coefficients, in 
other words versions, such that the errors terms 
become as small as possible [15]. Next, the 
higher order methods are expected to be more 
accurate than the lower order methods, but their 
construction becomes more challenging as the 
order is increased. Consequently, the number of 
derivatives computed increases with the order of 
the version and this may result in unacceptable 
computational costs (time or resources wise). In 
fact, above fourth order RK methods, the number 
of derivatives computed is greater than the value 
of the order. For example, to obtain a fifth order 
accurate explicit RK method, a minimum of six 
evaluations of the derivatives (stages) are 
required. Finally, there exists inadequate 

literature on the detailed comparison of             
several versions of fourth order Runge-Kutta 
methods. In light of the previously highlighted 
points, this study, to investigate selected 
versions of fourth order explicit RK methods, was 
developed. 
 

2. METHODOLOGY 
 

2.1 Materials 
 
Table 1 presents the crucial software and 
hardware components required for a successful 
completion of the study. 
 

2.2 Harmonically Excited Duffing 
Oscillator 

 

The Duffing equation, a second order, non-linear 
differential equation, has the general form: 
 

�̈ + 	��̇ + �� + 	��� = P�sin	(��)  (1) 
 
For this study, the parameters as defined in 
Table 2 were investigated. Inserting the values of 
parameters with single values into the general 
form given by equation (1) gives: 
 

�̈ + 	��̇ −
�

2
(1 − ��) = P�sin	(��) (2) 

 
Table 1. Materials utilized in the study 

 

FORTRAN Compiler Name GNU FORTRAN Compiler [21] 

Version 4.9.2 

Computer Processor Intel Pentium CPU B980 @ 2.40 Giga Hertz [Dual Core] 

System Type 64 bit Operating System, x64 – based processor 
 

Table 2. Values of parameters and initial conditions of the Duffing equation 

 

Parameters Values Description 

� 0.0168 ≤ 	� ≤ 0.168 101 points, uniformly distributed between the intervals. 

Hence, an increment of 0.001512 

� −
�

�
  Unvaried 

� +
�

�
  Unvaried 

�� 0.1	 ≤ �� ≤ 0.21 101 points, uniformly distributed between the intervals. 

Hence, an increment of 0.0011 

� (0.2 1.0 2.0) Three excitation frequencies [22]. 

(��,��,��̇) (0,−1,0),(0,0,0),(0,1,0)  Equilibrium points of Equation (2), used as initial 
conditions 
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Table 3 lists some constants and expressions 
required for the simulation of the Duffing 
equation. 
 

2.3 Versions of Explicit Fourth Order 
Runge-Kutta (RK) Method 

 
The explicit fourth order RK methods                              
are RK methods of order four ( �(ℎ�) ) and                      
four stages (four computations of derivatives). 
They are the highest order achievable with                     
the same number of stages as order,                           
hence their popularity. In Table 4 is the set of 
equations defining the fourth order method as 
well as a Butcher tableau of the coefficients of 
the method. 
 
Butcher [12] proved that the order conditions and 
simplifying assumptions for the fourth order RK 
methods result in eleven algebraic equations that 
can be used to solve for eleven out of the 
thirteen unknown coefficients in the fourth order 

Runge-Kutta formula (Table 4). The remaining 
two constants, which can be assigned any value, 
are responsible for the existence of an infinite 
number of versions of fourth order Runge-Kutta 
methods. Note that this phenomenon (infinite 
number of versions) is found in both lower and 
higher order methods. Efforts made by W. Kutta 
produced a complete classification of fourth order 
methods [9] and this classification, used as a 
basis for the selection of versions in this study, is 
presented in Table 5. 
 
Assignment of a value to the appropriate free 
parameter (degree of freedom, DOF) results in a 
version of fourth order RK method. For this 
study, fifty values, (such that 	0 < ����� < 1 ), 
were randomly generated and assigned to the 
DOF, as outlined in Table 6. Five additional 
versions, obtained from literature [1, 12] were 
included, to make a total of fifty five versions. 
Noteworthy is RK_55, which is the Classical 
fourth order RK method.  

 
Table 3. Other requirements for the simulation of the Duffing equation 

 

Parameter Value Parameter Value 

Pi, � 3.141592654 Initial length of step, ℎ� 
�

���
  

Excitation period, � 2 ∗
�

�
  Unsteady period of Oscillation, ��� 50∗�  

Number of excitation periods, �� 500 Required accuracy, �� 1.0� − 06 

Total simulation time, �� � ∗��  Safety factor, � 0.95 
 

Table 4. Definition of an explicit fourth order Runge-Kutta method 
 

Equations Butcher tableau 

���� = �� + (	�(�,�) ∙ℎ)  

 

�(�,�) = 	 ∑ (�� ∙��)
���
���   

 

�� = � �
�� + (�� ∙ℎ)	,

			�� + ∑ ���� ∙�� ∙ℎ����
��� 	

�  

0 0    

�� ��� 0   

�� ��� ��� 0  

�� ��� ��� ��� 0 

 �� �� �� �� 

 
Table 5. Cases in which a solution is certain to exist as identified by Kutta  

 

Case �� �� Others DOF 

1 �� ∉ �0,
�

�
,
�

�
±

√�

�
,1�  �� = 1 − ��  NA c2 

2 �� 	≠ 0 �� =
�

�
  �� = 0 c2 

3 �� =
�

�
  �� = 0 �� ≠ 0 b3 

4 �� = 1 �� =
�

�
  �� ≠ 0 b4 

5 �� = �� =
�

�
  �� = �� =

�

�
  �� ≠ 0 b3 
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2.4 Simulation 
 
A simulation entails the extrapolation of 
����(����) from ��(��) over a step size,	ℎ = ���� −
�� and two types of simulations are possible; 
 
 Constant simulation: utilizes the same step 

size to increment the time throughout the 
simulation. The value, 	ℎ�������� 	 obtained 
from [23] and given by equation (3) was 
used for the step size. 

 

ℎ�������� =
excitation	period,�

500
 (3) 

 
 Adaptive simulation: adjusts the                   

step size based on the value of                       
the estimated local truncation error,                
�� given by equation (4) and the accuracy 
required, �� (see Table 3). As the aim is to 
compare two versions of the same order, 
the step-halving method was selected for 
the adaptive simulation. Then the value, 
ℎ�������� 	was used as the first step size, 
and for subsequent steps, the step size is 
adjusted using equation either (5) or (6). 
Equation (5) is used to decrease the step 
size (when 	�� > �� ) while equation (6)                     
is used to increase the step size 
(when	�� ≤ ��). 

 
��	
= 	|�����	���� 	������	����
− �����	���� 	����	ℎ������| 

 

(4) 
 

ℎ��� = 	�	 ∗ 	ℎ	 ∗	��
��

��
�
(�.��)

� 

 

(5) 
 

ℎ��� = 	�	 ∗ 	ℎ	 ∗	��
��

��
�
(�.��)

� 
(6) 

 

 
where	� is the Safety factor, ��	is the estimated 
error and 	ℎ��� 	 is the adjusted step size,                
which would be used for the next step. In                   
this study, the failed steps, which are steps                   
in which the estimated error is greater                   
than the required accuracy 	(�� > ��),  are 
rejected. That is, the values obtained during              
the step were discarded and the step                
repeated until the step was successful 
(ℎ����	�� ≤ �� ). Also in the successful steps, 
the values from the single step are used for the 
next step. 
 

Defining a system as the Duffing equation, with 
all parameters assigned and one initial condition, 

then the varied parameters of the equation, along 
with the initial (equilibrium) conditions (see Table 
2) culminate in a total of 91,809 unique systems 
to which a System Number (S_N) is assigned to 
(see Table 7). For example, the system defined 
by �_� = 1  has �� = 0,�� = 0,��̇ = 0,� = 1,� =
0.0168,�� = 0.1	(see Table 2, Table 3, Table 7 
and Table 8). Furthermore, these systems may 
be grouped into sets, depending on their 
combinations of initial conditions and excitation 
frequencies. This produced 9 sets, with 10,201 
systems in each. Table 8 shows the sets, along 
with other details which are properties of every 
system in each set. Box A (in Table 8) shows the 
assignment of	′�′	and	′��′	in a set.  
 
The grouping into sets shown in Table 8 is the 
basis for the presentation of the results in a 
parameter plane. 
 
2.5 FORTRAN Program 
 

A FORTRAN program, utilizing double                       
precision for the floating point (REAL)                       
variables, was developed following the algorithm 
described in Fig. 1. The program was run for 
each system in Table 7 using the selected 
versions of the fourth order RK method. The 
results recorded include the number of 
successful steps, accepted step sizes, [�,�,�̇] 
data, number of failed (discarded) steps and the 
rejected step sizes at points 
′�1′,′�1′,′�2′,′�3′,′�3′	 respectively in Fig. 1. 
These results are presented next. 
 

Other useful information related to the simulation 
can be accessed on Github [27]. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Program Validation 
 
Validation of the FORTRAN program was 
achieved by comparing the Poincaré section 
plotted with data from the program against 
Poincaré section found in literature [24, 25] and it 
was found to be identical, thereby validating the 
program. Fig. 2 (a) was obtained with a constant 
simulation run for 	�_� = 10201 , (hence 	�� =
0,�� = 0,��̇ = 0,� = 1.0,� = 0.168,�� = 0.21)  
and	�� = 2500. 

 
3.2 Safety Factor and Step Size Selection 
 
Fig. 2 (b) presents the number of step ratio for a 
range of Safety factor values, from 	� = 0.2	 to  
� = 1	 for selected RK versions (RK_1,                  
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RK_2, RK_8, RK_14, RK_51, RK_52, RK_53, 
RK_54 and RK_55). On the vertical axis is                 
the number of step ratio defined as the ratio of 
the number of successive steps achieved with     

an adaptive simulation to that achieved           
with a constant simulation, expressed in 
percentage. 

 

������ 	��	����	�����=
������ 	��	����������	�����	���ℎ	��������	����������

������ 	��	����������	�����	���ℎ	��������	����������
	%  

(7) 
 

 
Table 6. Specification of free parameters for Runge-Kutta versions (RK) 

 

Case 1 2 3 4 5 

(DOF)  C2  C2  B3  B4  B3 

R
a
n
d

o
m

ly
 g

e
n

e
ra

te
d
 v

a
lu

e
s
 

RK_1 

0
.7

5
1
3

 

RK_11 

0
.8

4
0
7

 

RK_21 

0
.0

7
5
9

 

RK_31 

0
.1

6
2
2

 

RK_41 

0
.4

5
0
5

 

RK_2 

0
.2

5
5
1

 

RK_12 

0
.2

5
4
3

 

RK_22 

0
.0

5
4
0

 

RK_32 

0
.7

9
4
3

 

RK_42 

0
.0

8
3
8

 

RK_3 

0
.5

0
6

0
 

RK_13 

0
.8

1
4

3
 

RK_23 

0
.5

3
0

8
 

RK_33 

0
.3

1
1

2
 

RK_43 

0
.2

2
9

0
 

RK_4 

0
.6

9
9
1

 

RK_14 

0
.2

4
3
5

 

RK_24 

0
.7

7
9
2

 

RK_34 

0
.5

2
8
5

 

RK_44 

0
.9

1
3
3

 

RK_5 

0
.8

9
0
9

 

RK_15 

0
.9

2
9
3

 

RK_25 

0
.9

3
4
0

 

RK_35 
0
.1

6
5
6

 
RK_45 

0
.1

5
2
4

 

RK_6 

0
.9

5
9

3
 

RK_16 

0
.3

5
0

0
 

RK_26 

0
.1

2
9

9
 

RK_36 

0
.6

0
2

0
 

RK_46 

0
.8

2
5

8
 

RK_7 

0
.5

4
7
2

 

RK_17 

0
.1

9
6
6

 

RK_27 

0
.5

6
8
8

 

RK_37 

0
.2

6
3
0

 

RK_47 
0

.5
3

8
3

 

RK_8 

0
.1

3
8
6

 

RK_18 

0
.2

5
1
1

 

RK_28 

0
.4

6
9
4

 

RK_38 

0
.6

5
4
1

 

RK_48 

0
.9

9
6
1

 

RK_9 

0
.1

4
9
3

 

RK_19 

0
.6

1
6
0

 

RK_29 

0
.0

1
1
9

 

RK_39 

0
.6

8
9
2

 

RK_49 

0
.0

7
8
2

 

RK_10 

0
.2

5
7
5

 

RK_20 

0
.4

7
3
3

 

RK_30 

0
.3

3
7
1

 

RK_40 

0
.7

4
8
2

 

RK_50 

0
.4

4
2
7

 

Literature RK_51 

0
.3

3
3

3
 

RK_52 

0
.2

5
0

0
 

RK_53 

0
.0

8
3

3
 

RK_54 

0
.1

6
6

7
 

RK_55 

0
.3

3
3

3
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Table 7. Format of data for (independent) and from (dependent) simulation 
 

S_N Independent data Dependent data 
�  � (��,��̇) �� RK_1 RK_2 ⋯  RK_54 RK_55 

1 Assigned parameters 
and initial conditions 
(see Table 2) 

Results recorded from investigation 
(e.g. Number of successive steps 
to simulation end) 

2 
⋮ 
91809 
Unique values 3 101 3 101      

 
Table 8. Summary of Initial conditions and parameters for each system simulated 

 
S_N Set �� �� ��̇ �  � �� ��������� 
1 – 10201 Set 1 0 0 0 1.0 6.2832 3141.5900 1.2566E-02 
10202 – 20402 Set 2 0 1 0 1.0 6.2832 3141.5900 1.2566E-02 
20403 – 30603 Set 3 0 -1 0 1.0 6.2832 3141.5900 1.2566E-02 
30604 – 40804 Set 4 0 0 0 2.0 3.1416 1570.8000 6.2832E-03 
40805 – 51005 Set 5 0 1 0 2.0 3.1416 1570.8000 6.2832E-03 
51006 – 61206 Set 6 0 -1 0 2.0 3.1416 1570.8000 6.2832E-03 
61207 – 71407 Set 7 0 0 0 0.2 31.4159 15708.0000 6.2832E-02 
71408 – 81608 Set 8 0 1 0 0.2 31.4159 15708.0000 6.2832E-02 
81609 – 91809 Set 9 0 -1 0 0.2 31.4159 15708.0000 6.2832E-02 

B
o

x
 A

 

Set 1 � = 0.016800 � = 0.018312 ⋯  � = 0.168000 
�� = 0.2100 S_N = 10101 S_N = 10102 ⋯  S_N = 10201 
										⋮ 										⋮ 								⋮ ⋱ 									⋮ 
�� = 0.1011 S_N = 102 S_N = 103 ⋯  S_N = 202 
�� = 0.1000 S_N = 1 S_N = 2 ⋯  S_N = 101 

 

 
Fig. 1. Algorithm for the simulation of the Duffing equation 

 
A value of � = 1	 is susceptible to constant 
rejection and isn’t advised [26], while values of 
� > 1	results in an infinite loop, as ℎ��� 	is never 

accepted. Hence, considering Fig. 2, a value 
of 	0.5 < � < 1	 is advised. Note that this study 
utilized � = 0.95 (see Table 3). 
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Fig. 2. (a) Poincaré section obtained with	�� = �,��= �,��̇ = �,� = �.�,� = �.���,�� =
�.��,�� = ����. (b) Variation of number of successive steps to simulation end with safety 

factor 
 

3.3 Runge-Kutta Versions 
 

Two RK methods of the same order differ in their 
coefficients (see Table 4). Fig. 3 illustrates 
graphically the consequence of the differences 
between two versions of fourth order RK 
methods with regards to the time, ‘�’, step size, 
‘ ℎ ’ and number of failed (discarded) steps, 
‘�����’ within the first forty successful steps of 
the adaptive simulation execution. The period of 
excitation, ‘� = 6.2832�’ is also shown, so as to 
ascertain the point at which the time is reached. 
From Fig. 3(a), it can be observed that RK_1 
required 37 steps for	� = 6.2832� and had a total 
of 54 steps, since it rejected 14 steps. On the 
other hand in Fig. 3(b), it can be observed that 
RK_55 (classical 4

th
 RK) needed 30 steps 

for	� = 6.2832�, had a total of 49 steps, rejecting 
only 9 steps. The step sizes, 	ℎ  provide an 
explanation for the difference in number of 
successive steps to	� = �, as it can be observed 
that RK_55 permitted higher values of ℎ  than 
RK_1. 
 

3.4 Parameter Plane 
 
The parameter plane is a plot of two of the 
investigated parameters of systems in a given 
set. Each point on the parameter plane 
corresponds to a value of the forcing amplitude 
and the damping constant. As 101 values each, 
of the forcing amplitude and damping constant 
were selected, a total of 10,201 points exist on 
the plane. The colour (as well as shape) of a 

point indicates a Runge-Kutta version, with the 
assignment of colours (shapes) dependent on 
the results from the simulation. Fig. 4, Fig. 5, Fig. 
6, Fig. 7 and Fig. 8 are parameter planes 
showing the high performing versions for a given 
set, where a version is considered to be high 
performing if it achieves the lowest number of 
successful steps between the start and end of 
adaptive simulation periods for a given system. 
Table 9 gives numerical information on the 
respective parameter planes for each Set. The 
frequency of a version (Freq) is the number of 
systems in which the version had the lowest 
number of steps, the percentage share (% share) 
is the fraction of the total investigated systems 
(expressed in percentage) in which a version had 
the lowest number of steps and for the Case of 
the version, see Table 5. 
 
Recall the definition of a Set (see Table 8), then, 
the parameter planes in Fig. 4(a), Fig. 4(b), and 
Fig. 5(a) have the same excitation frequency, 
� = 1.0. Similarly, Fig. 5(b), Fig. 6(a) and Fig. 
6(b), � = 2.0 while Fig. 7(a), Fig. 7(b) and Fig. 8, 
� = 0.2. It is observable that within parameter 
planes with the same excitation frequency, the 
version (colour/shape) distribution is identical 
and this implies that the version performance is 
independent of initial conditions. The data in the 
Table 9 confirms this, where we find that the 
same set of versions have the largest percentage 
share for each excitation frequency, regardless 
of the initial conditions. On the other hand, 
across the excitation periods, the version 
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distributions are not identical, instead, the 
distribution becomes less coarse as the 
excitation frequency is increased ( � =
{0.2	 → 1.0	 → 2.0} ). Also, the total percentage 
share of the versions increases as well. This 
confirms the dependence of version performance 
on excitation frequency. As for the versions, no 

version had high performance in all three 
excitation frequencies but across two 
frequencies ,� = 0.2  and 	� = 1.0 , some high 
performing versions overlapped. With regards to 
the Cases (Table 5), majority of the high 
performing versions were selected from                     
Cases 1 and 2. 

 

 
 

Fig. 3. Time series for a period of oscillation for the Duffing equation for (a) RK_1 (b) RK_55. 
Each shows the adaptive step size and number of failed steps (NofFS) for each step. 

 

Table 9. Selected high performing versions in all Sets (hence 1 to 9) 
 

Set 01 Set 02 Set 03 

RK_V Freq % Share RK_V Freq % Share RK_V Freq % Share 

RK_17 6884 67.48% RK_17 6150 60.29% RK_17 6160 60.39% 

RK_2 2084 20.43% RK_2 2399 23.52% RK_2 2481 24.32% 

RK_10 342 3.35% RK_10 441 4.32% RK_10 392 3.84% 

RK_14 239 2.34% RK_14 349 3.42% RK_14 342 3.35% 

RK_12 190 1.86% RK_52 244 2.39% RK_12 228 2.24% 

Total 9739 95.46% Total 9583 93.94% Total 9603 94.14% 

Set 04 Set 05 Set 06 

RK_V Freq % Share RK_V Freq % Share RK_V Freq % Share 

RK_20 5801 56.87% RK_20 5921 58.04% RK_20 6299 61.75% 

RK_16 3344 32.78% RK_16 3327 32.61% RK_16 3058 29.98% 

RK_55 633 6.21% RK_3 442 4.33% RK_55 600 5.88% 

RK_3 352 3.45% RK_55 425 4.17% RK_3 148 1.45% 

RK_50 33 0.32% RK_50 54 0.53% RK_50 60 0.59% 

Total 10163 99.63% Total 10169 99.68% Total 10165 99.65% 



 
 
 
 

Salau and Adeleke; ACRI, 14(1): 1-16, 2018; Article no.ACRI.41227 
 
 

 
10 

 

(a) 

(b) 

Set 07 Set 08 Set 09 
RK_V Freq % Share RK_V Freq % Share RK_V Freq % Share 
RK_8 4401 43.14% RK_8 5851 57.36% RK_8 6137 60.16% 
RK_17 3103 30.42% RK_17 1608 15.76% RK_17 1612 15.80% 
RK_2 666 6.53% RK_16 647 6.34% RK_16 579 5.68% 
RK_14 428 4.20% RK_12 628 6.16% RK_12 534 5.23% 
RK_12 325 3.19% RK_2 522 5.12% RK_2 439 4.30% 
Total 8923 87.48% Total 9256 90.74% Total 9301 91.17% 

 

 

 
 

Fig. 4. Parameter plane highlighting the (five) versions with the lowest number of steps when 
used to simulate the dynamics of systems in (a) Set 1 (b) Set 2   
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Fig. 5. Parameter plane highlighting the (five) versions with the lowest number of steps when 
used to simulate the dynamics of systems in (a) Set 3 (b) Set 4
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Fig. 6. Parameter plane highlighting the (five) versions with the lowest number of steps when 
used to simulate the dynamics of systems in (a) Set 5 (b) Set 
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Fig. 7. Parameter plane highlighting the (five) versions with the lowest number of steps when 
used to simulate the dynamics of systems in (a) Set 7 (b) Set 8 
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Fig. 8. Parameter plane highlighting the (five) versions with the lowest number of steps when 
used to simulate the dynamics of systems in Set 9 

 

 
 

4. CONCLUSION 
 
Investigation of different versions of fourth order 
Runge-Kutta methods as simulation tools for 
seeking the solution of harmonically excited 
Duffing’s oscillator yielded results from which one 
can conclude that there exists significant 
variations when versions of the same order are 
used for the solution of ordinary differential 
equations. Other inferences from the results 
include: 
 
 The number of successive steps between 

start and end of simulation periods vary 
with versions 

 The version performance, with                         
regards to the number of successive                
steps, is highly dependent on the                 
excitation frequency, as the same set of 
versions have high performance across 
systems with the same excitation 
frequency.  

 The study results indicated strong 
preference for Runge-Kutta version 
derivation among two derivation options 
studied.  

 The popular classical fourth order Runge-
Kutta version is not the fastest, as other 
versions from the selection made for this 
study, outperformed it. 

Sets 

1, 2, 3 

 

4, 5, 6 

 

7, 8, 9 

Legend (Fig. 3 – Fig. 8) 
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