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ABSTRACT
In this paper, closed forms of the sum formulas for the cubes of generalized Fibonacci numbers are
presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobsthal and Jacobsthal-Lucas numbers.
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1 INTRODUCTION

The Fibonacci and Lucas sequences are very
well-known examples of second order recurrence
sequences. The Fibonacci numbers are perhaps
most famous for appearing in the rabbit breeding

problem, introduced by Leonardo de Pisa in 1202
in his book called Liber Abaci. The Fibonacci and
Lucas sequences are a source of many nice and
interesting identities. The sequence of Fibonacci
numbers {Fn} is defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1.
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and the sequence of Lucas numbers {Ln} is
defined by

Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1.

The Fibonacci numbers, Lucas numbers and
their generalizations have many interesting
properties and applications to almost every
field. Horadam [1] defined a generalization
of Fibonacci sequence, that is, he defined
a second-order linear recurrence sequence
{Wn(W0,W1; r, s)}, or simply {Wn}, as follows:
Wn = rWn−1 + sWn−2; W0 = a, W1 = b, (n ≥ 2) (1.1)

where W0,W1 are arbitrary complex numbers
and r, s are real numbers, see also Horadam [2],
[3] and [4]. Now these generalized Fibonacci

numbers {Wn(a, b; r, s)} are also called Horadam
numbers. The sequence {Wn}n≥0 can be
extended to negative subscripts by defining

W−n = −r

s
W−(n−1) +

1

s
W−(n−2)

for n = 1, 2, 3, ... when s ̸= 0. Therefore,
recurrence (1.1) holds for all integer n.

For some specific values of a, b, r and s, it
is worth presenting these special Horadam
numbers in a table as a specific name. In
literature, for example, the following names and
notations (see Table 1) are used for the special
cases of r, s and initial values.

Table 1. A few special case of generalized Fibonacci sequences

Name of sequence Notation: Wn(a, b; r, s) OEIS: [5]
Fibonacci Fn = Wn(0, 1; 1, 1) A000045

Lucas Ln = Wn(2, 1; 1, 1) A000032
Pell Pn = Wn(0, 1; 2, 1) A000129

Pell-Lucas Qn = Wn(2, 2; 2, 1) A002203
Jacobsthal Jn = Wn(0, 1; 1, 2) A001045

Jacobsthal-Lucas jn = Wn(2, 1; 1, 2) A014551

The evaluation of sums of powers of these sequences is a challenging issue. Two pretty examples
are

n∑
k=0

F 3
k =

1

2
(−F 3

n+2 − 3F 3
n+1 + 3F 2

n+2Fn+1 + 1)

and
n∑

k=0

P 3
k =

1

14
(−2P 3

n+2 − 16P 3
n+1 + 9P 2

n+2Pn+1 − 3P 2
n+1Pn+2 + 2).

In this work, we derive expressions for sums of third powers of generalized Fibonacci numbers. We
present some works on sum formulas of powers of the numbers in the following Table 2.

Table 2. A few special study on sum formulas of second, third and arbitrary powers

Name of sequence sums of second powers sums of third powers sums of powers
Generalized Fibonacci [6,7,8,9,10,11] [12,13] [14,15,16]
Generalized Tribonacci [17]
Generalized Tetranacci [18,19]

2 SUM FORMULAS OF GENERALIZED FIBONACCI NUMBERS
WITH POSITIVE SUBSCRIPTS

The following theorem presents some summing formulas of generalized Fibonacci numbers with
positive subscripts.

Theorem 2.1. For n ≥ 0 we have the following formulas: If (r+ s− 1)(rs− s3 +1)(r+ s− rs+ r2 +
s2 + 1) ̸= 0 then
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(a)
n∑

k=0

W 3
k =

∆1

(r + s− 1)(rs− s3 + 1)(r + s− rs+ r2 + s2 + 1)

where
∆1 = −(s

3
+ 2rs − 1)W

3
n+2 − (r

4
s + 3r

2
s
2 − r

3
s
3
+ 2rs + r

3
+ s

3 − 1)W
3
n+1

+3rs(r + s
2
)W

2
n+2Wn+1 − 3rs

2
(rs − 1)W

2
n+1Wn+2 + (2rs + s

3 − 1)W
3
1

+(r
4
s + 3r

2
s
2 − r

3
s
3
+ 2rs + r

3
+ s

3 − 1)W
3
0 − 3rs(r + s

2
)W

2
1 W0 + 3rs

2
(rs − 1)W

2
0 W1.

(b)
n∑

k=0

W 2
kWk+1 =

∆2

(r + s− 1)(rs− s3 + 1)(r + s− rs+ r2 + s2 + 1)

where
∆2 = −r (rs − 1)W

3
n+2 − rs

3
(rs − 1)W

3
n+1 + s(2r

3 − s
3
+ 1)W

2
n+2Wn+1

−(−2rs
4
+ r

4
s + 2rs + r

3
+ s

3 − 1)W
2
n+1Wn+2 + r (rs − 1)W

3
1

+rs
3
(rs − 1)W

3
0 − s(2r

3 − s
3
+ 1)W

2
1 W0 + (−2rs

4
+ r

4
s + 2rs + r

3
+ s

3 − 1)W
2
0 W1.

(c)
n∑

k=0

W 2
k+1Wk =

∆3

(r + s− 1)(rs− s3 + 1)(r + s− rs+ r2 + s2 + 1)

where

∆3 = r(r + s2)W 3
n+2 + rs3(r + s2)W 3

n+1 − (3r2s2 + r3 + s3 − 1)W 2
n+2Wn+1

+s2(2r3 − s3 + 1)W 2
n+1Wn+2 − r(r + s2)W 3

1 − rs3(r + s2)W 3
0

+(3r2s2 + r3 + s3 − 1)W 2
1W0 − s2(2r3 − s3 + 1)W 2

0W1.

Proof. Using the recurrence relation

Wn+2 = rWn+1 + sWn

i.e.
sWn = Wn+2 − rWn+1

we obtain
s3W 3

n = W 3
n+2 − 3rW 2

n+2Wn+1 + 3r2W 2
n+1Wn+2 − r3W 3

n+1

and so

s3W 3
n = W 3

n+2 − 3rW 2
n+2Wn+1 + 3r2W 2

n+1Wn+2 − r3W 3
n+1

s3W 3
n−1 = W 3

n+1 − 3rW 2
n+1Wn + 3r2W 2

nWn+1 − r3W 3
n

s3W 3
n−2 = W 3

n − 3rW 2
nWn−1 + 3r2W 2

n−1Wn − r3W 3
n−1

...

s3W 3
2 = W 3

4 − 3rW 2
4W3 + 3r2W 2

3W4 − r3W 3
3

s3W 3
1 = W 3

3 − 3rW 2
3W2 + 3r2W 2

2W3 − r3W 3
2

s3W 3
0 = W 3

2 − 3rW 2
2W1 + 3r2W 2

1W2 − r3W 3
1

If we add the above equations by side by, we get

s
3

n∑
k=0

W
3
k = (W

3
n+2 + W

3
n+1 − W

3
1 − W

3
0 +

n∑
k=0

W
3
k ) − 3r(W

2
n+2Wn+1 − W

2
1 W0 +

n∑
k=0

W
2
k+1Wk) (2.1)

+3r
2
(W

2
n+1Wn+2 − W

2
0 W1 +

n∑
k=0

W
2
kWk+1) − r

3
(W

3
n+1 − W

3
0 +

n∑
k=0

W
3
k ).
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Next we calculate
∑n

k=0 W
2
k+1Wk. Again, using the recurrence relation

Wn+2 = rWn+1 + sWn

i.e.
sWn = Wn+2 − rWn+1

we obtain
sW 2

n+1Wn = W 2
n+1Wn+2 − rW 3

n+1

and so

sW 2
n+1Wn = W 2

n+1Wn+2 − rW 3
n+1

sW 2
nWn−1 = W 2

nWn+1 − rW 3
n

sW 2
n−1Wn−2 = W 2

n−1Wn − rW 3
n−1

...

sW 2
3W2 = W 2

3W4 − rW 3
3

sW 2
2W1 = W 2

2W3 − rW 3
2

sW 2
1W0 = W 2

1W2 − rW 3
1

If we add the above equations by side by, we get

s

n∑
k=0

W 2
k+1Wk = (W 2

n+1Wn+2 −W 2
0W1 +

n∑
k=0

W 2
kWk+1)− r(W 3

n+1 −W 3
0 +

n∑
k=0

W 3
k ). (2.2)

Next we calculate
∑n

k=0 W
2
kWk+1. Again, using the recurrence relation

Wn+2 = rWn+1 + sWn

i.e.
sWn = Wn+2 − rWn+1 ⇒ s2W 2

n = W 2
n+2 + r2W 2

n+1 − 2rWn+2Wn+1

we obtain
s2W 2

nWn+1 = W 2
n+2Wn+1 + r2W 3

n+1 − 2rW 2
n+1Wn+2

and so

s2W 2
nWn+1 = W 2

n+2Wn+1 + r2W 3
n+1 − 2rW 2

n+1Wn+2

s2W 2
n−1Wn = W 2

n+1Wn + r2W 3
n − 2rW 2

nWn+1

s2W 2
n−2Wn−1 = W 2

nWn−1 + r2W 3
n−1 − 2rW 2

n−1Wn

...

s2W 2
2W3 = W 2

4W3 + r2W 3
3 − 2rW 2

3W4

s2W 2
1W2 = W 2

3W2 + r2W 3
2 − 2rW 2

2W3

s2W 2
0W1 = W 2

2W1 + r2W 3
1 − 2rW 2

1W2

If we add the above equations by side by, we get

s2
n∑

k=0

W 2
kWk+1 = (W 2

n+2Wn+1 −W 2
1W0 +

n∑
k=0

W 2
k+1Wk) + r2(W 3

n+1 −W 3
0 +

n∑
k=0

W 3
k ) (2.3)

−2r(W 2
n+1Wn+2 −W 2

0W1 +

n∑
k=0

W 2
kWk+1).

Then, solving the system (2.1)-(2.2)-(2.3), the required results of (a),(b) and (c) follow.
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Taking r = s = 1 in Theorem 2.1 (a) and (b), we obtain the following proposition.

Proposition 2.1. If r = s = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
3
k = 1

2
(−W 3

n+2 − 3W 3
n+1 + 3W 2

n+2Wn+1 +W 3
1 + 3W 3

0 − 3W 2
1W0).

(b)
∑n

k=0 W
2
kWk+1 = 1

2
(W 2

n+2Wn+1 −W 2
n+1Wn+2 −W 2

1W0 +W 2
0W1).

(c)
∑n

k=0 W
2
k+1Wk = 1

2
(W 3

n+2+W 3
n+1−2W 2

n+2Wn+1+W 2
n+1Wn+2−W 3

1 −W 3
0 +2W 2

1W0−W 2
0W1).

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci
numbers (take Wn = Fn with F0 = 0, F1 = 1).

Corollary 2.2. For n ≥ 0, Fibonacci numbers have the following properties:

(a)
∑n

k=0 F
3
k = 1

2
(−F 3

n+2 − 3F 3
n+1 + 3F 2

n+2Fn+1 + 1).

(b)
∑n

k=0 F
2
kFk+1 = 1

2
(F 2

n+2Fn+1 − F 2
n+1Fn+2).

(c)
∑n

k=0 F
2
k+1Fk = 1

2
(F 3

n+2 + F 3
n+1 − 2F 2

n+2Fn+1 + F 2
n+1Fn+2 − 1).

Taking Wn = Ln with L0 = 2, L1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Lucas numbers.

Corollary 2.3. For n ≥ 0, Lucas numbers have the following properties:

(a)
∑n

k=0 L
3
k = 1

2
(−L3

n+2 − 3L3
n+1 + 3L2

n+2Ln+1 + 19).

(b)
∑n

k=0 L
2
kLk+1 = 1

2
(L2

n+2Ln+1 − L2
n+1Ln+2 + 2).

(c)
∑n

k=0 L
2
k+1Lk = 1

2
(L3

n+2 + L3
n+1 − 2L2

n+2Ln+1 + L2
n+1Ln+2 − 9).

Taking r = 2, s = 1 in Theorem 2.1 (a) and (b), we obtain the following proposition.

Proposition 2.2. If r = 2, s = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
3
k = 1

14
(−2W 3

n+2 − 16W 3
n+1 + 9W 2

n+2Wn+1 − 3W 2
n+1Wn+2 + 2W 3

1 + 16W 3
0 − 9W 2

1W0 +
3W 2

0W1).

(b)
∑n

k=0 W
2
kWk+1 = 1

14
(−W 3

n+2 −W 3
n+1 + 8W 2

n+2Wn+1 − 12W 2
n+1Wn+2 +W 3

1 +W 3
0 − 8W 2

1W0 +
12W 2

0W1).

(c)
∑n

k=0 W
2
k+1Wk = 1

14
(3W 3

n+2−10W 2
n+2Wn+1+3W 3

n+1+8W 2
n+1Wn+2−3W 3

1 −3W 3
0 +10W 2

1W0−
8W 2

0W1).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers
(take Wn = Pn with P0 = 0, P1 = 1).

Corollary 2.4. For n ≥ 0, Pell numbers have the following properties:

(a)
∑n

k=0 P
3
k = 1

14
(−2P 3

n+2 − 16P 3
n+1 + 9P 2

n+2Pn+1 − 3P 2
n+1Pn+2 + 2).

(b)
∑n

k=0 P
2
kPk+1 = 1

14
(−P 3

n+2 − P 3
n+1 + 8P 2

n+2Pn+1 − 12P 2
n+1Pn+2 + 1).

(c)
∑n

k=0 P
2
k+1Pk = 1

14
(3P 3

n+2 − 10P 2
n+2Pn+1 + 3P 3

n+1 + 8P 2
n+1Pn+2 − 3).

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of Pell-Lucas numbers.

Corollary 2.5. For n ≥ 0, Pell-Lucas numbers have the following properties:

(a)
∑n

k=0 Q
3
k = 1

14
(−2Q3

n+2 − 16Q3
n+1 + 9Q2

n+2Qn+1 − 3Q2
n+1Qn+2 + 96).

(b)
∑n

k=0 Q
2
kQk+1 = 1

14
(−Q3

n+2 −Q3
n+1 + 8Q2

n+2Qn+1 − 12Q2
n+1Qn+2 + 48).
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(c)
∑n

k=0 Q
2
k+1Qk = 1

14
(3Q3

n+2 − 10Q2
n+2Qn+1 + 3Q3

n+1 + 8Q2
n+1Qn+2 − 32).

Taking r = 1, s = 2 in Theorem 2.1 (a) and (b), we obtain the following proposition.

Proposition 2.3. If r = 1, s = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
3
k = 1

70
(11W 3

n+2+18W 3
n+1−30W 2

n+2Wn+1+12W 2
n+1Wn+2−11W 3

1 −18W 3
0 +30W 2

1W0−
12W 2

0W1).

(b)
∑n

k=0 W
2
kWk+1 = 1

70
(W 3

n+2+8W 3
n+1+10W 2

n+2Wn+1−18W 2
n+1Wn+2−W 3

1 −8W 3
0 −10W 2

1W0+
18W 2

0W1).

(c)
∑n

k=0 W
2
k+1Wk = 1

70
(−5W 3

n+2 − 40W 3
n+1 + 20W 2

n+2Wn+1 + 20W 2
n+1Wn+2 + 5W 3

1 + 40W 3
0 −

20W 2
1W0 − 20W 2

0W1).

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal
numbers (take Wn = Jn with J0 = 0, J1 = 1).

Corollary 2.6. For n ≥ 0, Jacobsthal numbers have the following properties:

(a)
∑n

k=0 J
3
k = 1

70
(11J3

n+2 + 18J3
n+1 − 30J2

n+2Jn+1 + 12J2
n+1Jn+2 − 11).

(b)
∑n

k=0 J
2
kJk+1 = 1

70
(J3

n+2 + 8J3
n+1 + 10J2

n+2Jn+1 − 18J2
n+1Jn+2 − 1).

(c)
∑n

k=0 J
2
k+1Jk = 1

70
(−5J3

n+2 − 40J3
n+1 + 20J2

n+2Jn+1 + 20J2
n+1Jn+2 + 5).

Taking Wn = jn with j0 = 2, j1 = 1 in the last theorem, we have the following corollary which presents
sum formulas of Jacobsthal-Lucas numbers.

Corollary 2.7. For n ≥ 0, Jacobsthal-Lucas numbers have the following properties:

(a)
∑n

k=0 j
3
k = 1

70
(11j3n+2 + 18j3n+1 − 30j2n+2jn+1 + 12j2n+1jn+2 − 143).

(b)
∑n

k=0 j
2
kjk+1 = 1

70
(j3n+2 + 8j3n+1 + 10j2n+2jn+1 − 18j2n+1jn+2 − 13).

(c)
∑n

k=0 j
2
k+1jk = 1

70
(−5j3n+2 − 40j3n+1 + 20j2n+2jn+1 + 20j2n+1jn+2 + 205).

3 SUM FORMULAS OF GENERALIZED FIBONACCI NUMBERS
WITH NEGATIVE SUBSCRIPTS

The following theorem presents some summing formulas of generalized Fibonacci numbers with
negative subscripts.

Theorem 3.1. For n ≥ 1 we have the following formulas:If (rs−s3+1)(r+s−1)(r+s−rs+r2+s2+1) ̸=
0 then

(a)
n∑

k=1

W 3
−k =

∆4

(rs− s3 + 1)(r + s− 1)(r + s− rs+ r2 + s2 + 1)

where

∆4 = (2rs + s
3 − 1)W

3
−n+1 + (r

4
s + 3r

2
s
2 − r

3
s
3
+ 2rs + r

3
+ s

3 − 1)W
3
−n − 3rs(r + s

2
)W

2
−n+1W−n

+3rs
2
(rs − 1)W−n+1W

2
−n − (2rs + s

3 − 1)W
3
1

−(r
4
s + 3r

2
s
2 − r

3
s
3
+ 2rs + r

3
+ s

3 − 1)W
3
0 + 3rs(r + s

2
)W

2
1 W0 − 3rs

2
(rs − 1)W

2
0 W1.
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(b)
n∑

k=1

W 2
−k+1W−k =

∆5

(rs− s3 + 1)(r + s− 1)(r + s− rs+ r2 + s2 + 1)

where

∆5 = −r(r + s2)W 3
−n+1 − rs3(r + s2)W 3

−n + (3r2s2 + r3 + s3 − 1)W 2
−n+1W−n

−s2(2r3 − s3 + 1)W 2
−nW−n+1 + r(r + s2)W 3

1 + rs3(r + s2)W 3
0

−(3r2s2 + r3 + s3 − 1)W 2
1W0 + s2(2r3 − s3 + 1)W 2

0W1.

(c)
n∑

k=1

W 2
−kW−k+1 =

∆6

(rs− s3 + 1)(r + s− 1)(r + s− rs+ r2 + s2 + 1)

where

∆6 = r (rs − 1)W
3
−n+1 + rs

3
(rs − 1)W

3
−n − s(2r

3 − s
3
+ 1)W

2
−n+1W−n

+(−2rs
4
+ r

4
s + 2rs + r

3
+ s

3 − 1)W
2
−nW−n+1 − r (rs − 1)W

3
1

−rs
3
(rs − 1)W

3
0 + s(2r

3 − s
3
+ 1)W

2
1 W0 − (−2rs

4
+ r

4
s + 2rs + r

3
+ s

3 − 1)W
2
0 W1.

Proof. Using the recurrence relation

W−n+2 = rW−n+1 + sW−n ⇒ W−n = −r

s
W−n+1 +

1

s
W−n+2

i.e.
sW−n = W−n+2 − rW−n+1

we obtain
s3W 3

−n = W 3
−n+2 − 3rW 2

−n+2W−n+1 + 3r2W 2
−n+1W−n+2 − r3W 3

−n+1

and so

s3W 3
−n = W 3

−n+2 − 3rW 2
−n+2W−n+1 + 3r2W 2

−n+1W−n+2 − r3W 3
−n+1

s3W 3
−n+1 = W 3

−n+3 − 3rW 2
−n+3W−n+2 + 3r2W 2

−n+2W−n+3 − r3W 3
−n+2

s3W 3
−n+2 = W 3

−n+4 − 3rW 2
−n+4W−n+3 + 3r2W 2

−n+3W−n+4 − r3W 3
−n+3

...

s3W 3
−3 = W 3

−1 − 3rW 2
−1W−2 + 3r2W 2

−2W−1 − r3W 3
−2

s3W 3
−2 = W 3

0 − 3rW 2
0W−1 + 3r2W 2

−1W0 − r3W 3
−1

s3W 3
−1 = W 3

1 − 3rW 2
1W0 + 3r2W 2

0W1 − r3W 3
0

If we add the above equations by side by, we get

s3(

n∑
k=1

W 3
−k) = (−W 3

−n+1 −W 3
−n +W 3

1 +W 3
0 +

n∑
k=1

W 3
−k) (3.1)

−3r(−W 2
−n+1W−n +W 2

1W0 +

n∑
k=1

W 2
−k+1W−k)

+3r2(−W 2
−nW−n+1 +W 2

0W1 +
n∑

k=1

W 2
−kW−k+1)

−r3(−W 3
−n +W 3

0 +

n∑
k=1

W 3
−k).
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Next we calculate
∑n

k=1 W
2
−k+1W−k. Again using the recurrence relation

W−n+2 = rW−n+1 + sW−n ⇒ W−n = −r

s
W−n+1 +

1

s
W−n+2

i.e.
sW−n = W−n+2 − rW−n+1

we obtain
sW 2

−n+1W−n = W 2
−n+1W−n+2 − rW 3

−n+1

and so

sW 2
−n+1W−n = W 2

−n+1W−n+2 − rW 3
−n+1

sW 2
−n+2W−n+1 = W 2

−n+2W−n+3 − rW 3
−n+2

sW 2
−n+3W−n+2 = W 2

−n+3W−n+4 − rW 3
−n+3

...

sW 2
−2W−3 = W 2

−2W−1 − rW 3
−2

sW 2
−1W−2 = W 2

−1W0 − rW 3
−1

sW 2
0W−1 = W 2

0W1 − rW 3
0

If we add the above equations by side by, we get

s

n∑
k=1

W 2
−k+1W−k = (−W 2

−nW−n+1+W 2
0W1+

n∑
k=1

W 2
−kW−k+1)−r(−W 3

−n+W 3
0 +

n∑
k=1

W 3
−k). (3.2)

Next we calculate
∑n

k=1 W
2
−k+1W−k. Again using the recurrence relation

W−n+2 = rW−n+1 + sW−n

i.e.
sW−n = W−n+2 − rW−n+1

we obtain

s2W 2
−n = W 2

−n+2 − 2rW−n+2W−n+1 + r2W 2
−n+1

⇒ s2W 2
−nW−n+1 = W 2

−n+2W−n+1 − 2rW 2
−n+1W−n+2 + r2W 3

−n+1

and so

s2W 2
−nW−n+1 = W 2

−n+2W−n+1 − 2rW 2
−n+1W−n+2 + r2W 3

−n+1

s2W 2
−n+1W−n+2 = W 2

−n+3W−n+2 − 2rW 2
−n+2W−n+3 + r2W 3

−n+2

s2W 2
−n+2W−n+3 = W 2

−n+4W−n+3 − 2rW 2
−n+3W−n+4 + r2W 3

−n+3

...

s2W 2
−3W−2 = W 2

−1W−2 − 2rW 2
−2W−1 + r2W 3

−2

s2W 2
−2W−1 = W 2

0W−1 − 2rW 2
−1W0 + r2W 3

−1

s2W 2
−1W0 = W 2

1W0 − 2rW 2
0W1 + r2W 3

0
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If we add the above equations by side by, we get

s2
n∑

k=1

W 2
−kW−k+1 = (−W 2

−n+1W−n +W 2
1W0 +

n∑
k=1

W 2
−k+1W−k) (3.3)

−2r(−W 2
−nW−n+1 +W 2

0W1 +

n∑
k=1

W 2
−kW−k+1)

+r2(−W 3
−n +W 3

0 +

n∑
k=1

W 3
−k).

Then, solving the system (3.1)-(3.2)-(3.3), the required results of (a),(b) and (c) follow.

Taking r = s = 1 in Theorem 3.1 (a) and (b), we obtain the following proposition.

Proposition 3.1. If r = s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 W
3
−k = 1

2
(W 3

−n+1 + 3W 3
−n − 3W 2

−n+1W−n −W 3
1 − 3W 3

0 + 3W 2
1W0).

(b)
∑n

k=1 W
2
−k+1W−k = 1

2
(−W 3

−n+1 −W 3
−n +2W 2

−n+1W−n −W 2
−nW−n+1 +W 3

1 +W 3
0 − 2W 2

1W0 +
W 2

0W1).

(c)
∑n

k=1 W
2
−kW−k+1 = 1

2
(−W 2

−n+1W−n +W 2
−nW−n+1 +W 2

1W0 −W 2
0W1).

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci
numbers (take Wn = Fn with F0 = 0, F1 = 1).

Corollary 3.2. For n ≥ 1, Fibonacci numbers have the following properties.

(a)
∑n

k=1 F
3
−k = 1

2
(F 3

−n+1 + 3F 3
−n − 3F 2

−n+1F−n − 1).

(b)
∑n

k=1 F
2
−k+1F−k = 1

2
(−F 3

−n+1 − F 3
−n + 2F 2

−n+1F−n − F 2
−nF−n+1 + 1).

(c)
∑n

k=1 F
2
−kF−k+1 = 1

2
(−F 2

−n+1F−n + F 2
−nF−n+1).

Taking Wn = Ln with L0 = 2, L1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Lucas numbers.

Corollary 3.3. For n ≥ 1, Lucas numbers have the following properties.

(a)
∑n

k=1 L
3
−k = 1

2
(L3

−n+1 + 3L3
−n − 3L2

−n+1L−n − 19).

(b)
∑n

k=1 L
2
−k+1L−k = 1

2
(−L3

−n+1 − L3
−n + 2L2

−n+1L−n − L2
−nL−n+1 + 9).

(c)
∑n

k=1 L
2
−kL−k+1 = 1

2
(−L2

−n+1L−n + L2
−nL−n+1 − 2).

Taking r = 2, s = 1 in Theorem 3.1 (a) and (b), we obtain the following proposition.

Proposition 3.2. If r = 2, s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 W
3
−k = 1

14
(2W 3

−n+1 +16W 3
−n − 9W 2

−n+1W−n +3W 2
−nW−n+1 − 2W 3

1 − 16W 3
0 +9W 2

1W0 −
3W 2

0W1).

(b)
∑n

k=1 W
2
−k+1W−k = 1

14
(−3W 3

−n+1 − 3W 3
−n + 10W 2

−n+1W−n − 8W 2
−nW−n+1 + 3W 3

1 + 3W 3
0 −

10W 2
1W0 + 8W 2

0W1).

(c)
∑n

k=1 W
2
−kW−k+1 = 1

14
(W 3

−n+1+W 3
−n−8W 2

−n+1W−n+12W 2
−nW−n+1−W 3

1 −W 3
0 +8W 2

1W0−
12W 2

0W1).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers
(take Wn = Pn with P0 = 0, P1 = 1).
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Corollary 3.4. For n ≥ 1, Pell numbers have the following properties.

(a)
∑n

k=1 P
3
−k = 1

14
(2P 3

−n+1 + 16P 3
−n − 9P 2

−n+1P−n + 3P 2
−nP−n+1 − 2).

(b)
∑n

k=1 P
2
−k+1P−k = 1

14
(−3P 3

−n+1 − 3P 3
−n + 10P 2

−n+1P−n − 8P 2
−nP−n+1 + 3).

(c)
∑n

k=1 P
2
−kP−k+1 = 1

14
(P 3

−n+1 + P 3
−n − 8P 2

−n+1P−n + 12P 2
−nP−n+1 − 1).

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of Pell-Lucas numbers.

Corollary 3.5. For n ≥ 1, Pell-Lucas numbers have the following properties.

(a)
∑n

k=1 Q
3
−k = 1

14
(2Q3

−n+1 + 16Q3
−n − 9Q2

−n+1Q−n + 3Q2
−nQ−n+1 − 96).

(b)
∑n

k=1 Q
2
−k+1Q−k = 1

14
(−3Q3

−n+1 − 3Q3
−n + 10Q2

−n+1Q−n − 8Q2
−nQ−n+1 + 32).

(c)
∑n

k=1 Q
2
−kQ−k+1 = 1

14
(Q3

−n+1 +Q3
−n − 8Q2

−n+1Q−n + 12Q2
−nQ−n+1 − 48).

Taking r = 1, s = 2 in Theorem 3.1 (a),(b) and (c), we obtain the following proposition.

Proposition 3.3. If r = 1, s = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 W
3
−k = 1

70
(−11W 3

−n+1−18W 3
−n+30W 2

−n+1W−n−12W 2
−nW−n+1+11W 3

1 +18W 3
0 −30W 2

1

W0 + 12W 2
0W1).

(b)
∑n

k=1 W
2
−k+1W−k = 1

70
(5W 3

−n+1 + 40W 3
−n − 20W 2

−n+1W−n − 20W 2
−nW−n+1 − 5W 3

1 − 40W 3
0 +

20W 2
1W0 + 20W 2

0W1).

(c)
∑n

k=1 W
2
−kW−k+1 = 1

70
(−W 3

−n+1 − 8W 3
−n − 10W 2

−n+1W−n + 18W 2
−nW−n+1 + W 3

1 + 8W 3
0 +

10W 2
1W0 − 18W 2

0W1).

From the last proposition, we have the following corollary which gives sum formula of Jacobsthal
numbers (take Wn = Jn with J0 = 0, J1 = 1).

Corollary 3.6. For n ≥ 1, Jacobsthal numbers have the following properties:

(a)
∑n

k=1 J
3
−k = 1

70
(−11J3

−n+1 − 18J3
−n + 30J2

−n+1J−n − 12J2
−nJ−n+1 + 11).

(b)
∑n

k=1 J
2
−k+1J−k = 1

70
(5J3

−n+1 + 40J3
−n − 20J2

−n+1J−n − 20J2
−nJ−n+1 − 5).

(c)
∑n

k=1 J
2
−kJ−k+1 = 1

70
(−J3

−n+1 − 8J3
−n − 10J2

−n+1J−n + 18J2
−nJ−n+1 + 1).

Taking Wn = jn with j0 = 2, j1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.7. For n ≥ 1, Jacobsthal-Lucas numbers have the following properties:

(a)
∑n

k=1 j
3
−k = 1

70
(−11j3−n+1 − 18j3−n + 30j2−n+1j−n − 12j2−nj−n+1 + 143).

(b)
∑n

k=1 j
2
−k+1j−k = 1

70
(5j3−n+1 + 40j3−n − 20j2−n+1j−n − 20j2−nj−n+1 − 205).

(c)
∑n

k=1 j
2
−kj−k+1 = 1

70
(−j3−n+1 − 8j3−n − 10j2−n+1j−n + 18j2−nj−n+1 + 13).

4 CONCLUSION

Recently, there have been so many studies of
the sequences of numbers in the literature and
the sequences of numbers were widely used
in many research areas, such as architecture,
nature, art, physics and engineering. In this work,

sum identities were proved. The method used
in this paper can be used for the other linear
recurrence sequences, too. We have written sum
identities in terms of the generalized Fibonacci
sequence, and then we have presented the
formulas as special cases the corresponding
identity for the Fibonacci, Lucas, Pell, Pell-Lucas,
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Jacobsthal, Jacobsthal-Lucas numbers. All the
listed identities in the corollaries may be proved
by induction, but that method of proof gives no
clue about their discovery. We give the proofs
to indicate how these identities, in general, were
discovered.

We can summarize the sections as follows:

• In section 1, we present some background
about generalized Fibonacci numbers.

• In section 2, summation formulas have
been presented for the generalized
Fibonacci numbers with positive
subscripts. As special cases, summation
formulas of Fibonacci, Lucas, Pell, Pell-
Lucas, Jacobsthal, Jacobsthal-Lucas
numbers with positive subscripts have
been given.

• In section 3, summation formulas have
been presented for the generalized
Fibonacci numbers with negative
subscripts. As special cases, summation
formulas of Fibonacci, Lucas, Pell, Pell-
Lucas, Jacobsthal, Jacobsthal-Lucas
numbers with negative subscripts have
been given.
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