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ABSTRACT 
 

Present paper mainly intends to find out suitable sites for surface water harvesting in Kushkarani 
river basin a tributary of Mayurakshi river of Eastern India. For this multiparametric potential 
surface water availability model and SCS CN based runoff depth models have been prepared in 
soft ware environments. Both unweighted and weighted linear combination methods are used for 
compositing the selected parameters. Results show that 14.18% of a total basin area (172 sq. km.) 
characterised by very high surface water potential is mainly concentrated in the confluence 
segment of the river followed by high potential zone covering 22.47% area. Unweighted 
composting model based estimation shows that very high and high surface water potential zone 
cover 8.22% and 21.95% of basin area, but areal extent in these two classes is little bit lower than 
the results obtained from weighted composting model. Field based discharge measurement 
validates the surface water potential zones. Similarly, Discharge availability in the rivers of different 
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potential zones are also indicating very accordant result and validating the surface water runoff 
models. SCS CN based runoff depth model represents that 9.32% area covers very high runoff 
depth (657 mm. to 693 mm). Calculated Relative error value and Nash-Sutcliffe efficiency values 
are respectively 53.65% and 0. 6782 which represent that runoff model is not highly optimum but it 
is within the range of acceptability. Correlation coefficient value between monsoon runoff depth 
and surface water potentiality (r=0.6453) is high and it is significant at 0.01 level of significance 
which does indicate both the models are highlighting result in same direction. For validating these 
models with field based discharge data, it is noticed that discharge data strongly controls surface 
water availability (R2=0.962) and runoff depth (R2=0.970). From the models it is proved that 
specifically, confluence segment and very proximate riparian low land of the rivers is selected as 
suitable sites for surface water harvesting.  
 

 
Keywords: Surface water potentiality; runoff depth model; discharge measurement; validation of 

models; suitable sites and surface water harvesting. 
 
1. INTRODUCTION 
 
Water scarcity is likely to be one of the main 
haunting problems, resulting from combined 
effects of alterations in the hydrological cycle, 
anticipated under climate change, and of the 
increase in water demands for agriculture, urban 
and industries [1,2]. High population density 
(756/sq.km. as per Census of India, 2011) and 
soaring growth of population (1.57%) in the study 
area is the principal cause behind growing 
demand of agricultural goods in the study area. 
To meet the need, in last 40 years, agricultural 
growth has reached to 4-5% and cropping 
intensity has raised to 176% [3]. The country like 
India is highly characterized by seasonal and 
partially temporal variability of rainfall [4] and this 
area possesses even more seasonal variability of 
rainfall. Out of total rainfall, 82% rainfall occurs 
during June to September [5]. In this high time of 
rainfall only one crop can be yielded. Rest other 
cropping intensity is highly supported by irrigation 
based water supply. Out of total irrigated area 
52% irrigated area is served by ground water 
based irrigation schemes [6] and over time 
ground water extraction rate for irrigation has 
been going rise and thereby make the ground 
water resource scare [7] force ground water table 
far below ground level (bgl) [8,9]. Events of the 
failure of ground water extraction by the shallow 
tube wells established the fact of ground water 
level is lowering down with very significant scale 
[10].  
 
In such condition, locating suitable sites for 
surface water banking and harvesting are 
essential task for supporting surface water based 
irrigation projects and sustenance of agricultural 
production in the study area. The region 
possesses 234 km. stream length with stream 
density of 1.41/sq.km. It indicates there is a high 

potentiality of surface water availability as runoff. 
But the entire river basin is not potential for 
supplying surface water for irrigation. Disparity in 
stream concentration over space and order of 
stream usually make a huge difference in surface 
water availability. For example, stream 
concentration is high in the upper catchment but 
most of the streams are either 1st and 2nd orders 
and therefore water potentiality is very meager.    
 
Present paper attempts to find out the surface 
water potential sites using multi criteria weighted 
linear combination (WCL) score in GIS and RS 
soft wares environment. WLC is done following 
different approaches as described in method 
section. In this study tried to validate potential 
surface water models with discharge data 
collected from different stream sites and junction 
sites of various potential water available zones. 
Apart from this Soil conservation Service Curve 
Number method is also applied for estimating 
amount of surface runoff. The SCS CN method is 
simple and produces better results [11-15]. For 
simplicity and reliability of this method many 
researcher used it for runoff estimation. Zhan 
and Huang [16], Tessema et al. [17], Awadallah 
et al. [18], Khare et al. [19] have performed this 
method in GIS environment. In India, Nayak and 
Jaisawal [20] developed a good correlation 
between measured and estimated run-off using 
GIS and SCS CN model. They said that GIS is 
an effective tool for constructing SCS CN model 
with maximum input data. In present study SCS 
CN based surface runoff model is also tried to 
build up in for the same purpose. Effective runoff 
depth is calculated from SCS CN based runoff 
depth model as far the evaporation loss is 
strongly concerned. Researcher discussed in 
their study impact of evapotranspiration on runoff 
and water availability in arid and semiarid plateau 
region [21].   
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Applications of remote sensing and GIS for the 
exploration of groundwater potential zones                
[22-27] delineation of spatial saturated areas and 
wetness index [28,29] land use suitability for 
defining suitable habitat for animal and plant 
species [30,31], geological favorability [32], 
suitability of land for agricultural activities [33-35], 
landscape evaluation and planning [36], 
environmental impact assessment  [37], selecting 
the best site for the public and private sector 
facilities [38,39], and regional planning [40] 
including a number of criteria have been 
performed and they produced amazing results for 
concerned decision support. SCS Curve Number 
[41] based identification of surface water 
potential zone is also performed by many 
scholars like Rao et al. and Ramakrishnan et al. 
[42,43]. This attempt is also useful toward the 
aim set in this present paper. 
 
2. STUDY AREA 
 
Kushkarani river is an upper catchment tributary 
of Mayurakshi River situated in Birbhum district 
of West Bengal and Jamtara district of 
Jharkhand. The basin is demarcated by 23°54’ 
36” N. to 24° N. latitudes and 87°14’24” E. to 
87°30’ E. longitudes with a total area of 172 sq. 
km. (see Fig. 1). The east-west elongated basin 
of the 35 km. long river is physiographically 
situated in the eastern margin of the 
Chhotonagpur plateau, where the highest 
elevation (155 metres) is seen in the western 
side near the source of the river and lowest 
elevation (62 metres) is seen in the eastern side 
near its confluence where at present Tilpara 
barrage and consequent reservoir is located 
(23°56'46.91˝N. lat. and 87°31'30.73˝E long.) 
(see Fig. 1). Maximum area of the basin is 
occupied by undulated topography with an 
average elevation of 108 metres. On an average 
120 metres contour roughly demarcates upper 
catchment, 80 metres contour delimits middle 
and lower catchments. Entire basin area comes 
under rarh tract [44] with secondary laterite 
formation [45] mainly carried by some of the 
rivers like Kushkarani coming from Chottanagpur 
plateau [46-48]. Average slope, measured as per 
Wentworth’s method [49], is 3% to 5% whereas it 
is <1% in the confluence segment. Geologically 
90% of the basin area is composed with granitic 
gneissic rock of Plesitocene age (50 lakh years 
old) overlain by coarse grain lateritic soil and a 
few isolated patches covering 08% and 02% 
area of the lower catchment is made with older 

and newer alluvium respectively of Holocene 
period over granitic basement (Fig. 1) (GSI 
1985). Just below 4 km. below the confluence 
point Farakka-Midnapore fault passes through. 
Average annual rainfall of this basin as gauged 
by Suri meteorological station is 1444.432 mm. 
High degree of seasonality of rainfall is reflected 
by 82% rainfall during the months of June to 
September. Rainfall analysis since 1980 to 2013 
focused that there is no significant trend of 
rainfall as also indicated by linear regression 
model (y -2.137x+5704) and coefficient of 
determination (R2 = 0.005). This trend is identical 
with the general trend of rainfall in India as 
estimated by many a scholars. Parthasarathy       
et al. [50], reported that in all India scale there is 
no significant change of rainfall in last 110 years 
excepts few regional pockets. Average potential 
evaporation of this area since 1901 to 2014 is 
73.45 mm./year [51] which indicates one of the 
controlling factors of surface water.   
 
Most part of the basin is characterized by coarse 
grain laterite soil with ferruginous nodules, 
feldspar nodule. In some parts older alluvium 
admixed with reddish laterite overlain granite 
gneiss regolith. These soil are very susceptible to 
erosion and supply substantial amount of 
sediment to the channel. Extreme confluence 
segment is characterized by newer alluvium lying 
over older alluvium and it is because of frequent 
flooding in response to the water balance to the 
Tilpara reservoir which is located over 
Mayurakshi river. Reservoir effects have created 
back water not only within channel but astride 
lowlands (see Fig. 1). Backwater effects 
influence up to 4 km. upstream of Kushkarani 
river which is the present area of interest.   
 
Total 292 stream segments have identified out of 
which 224 belongs to 1st order, 55 belong to 2nd 
order, 12 stream segments belong to 3rd order, 
and 1 belongs to 4th order. Mean bifurcation ratio 
of this basin is 4.027. Very less form factor 
(F=0.268) indicates elongated river basin. 
Drainage frequency, density, texture are 
respectively 1.695/sq.km., 1.76 km/sq.km and 
4.36. Index of areal asymmetry (Aa=0.754) 
indicates asymmetry in area distribution in two 
sides of the main channel is existing but its 
degree is very marginal. Hypsometric integral 
(HI) is 0.38 does indicate the basin is passing 
through old stage. Positive base level change 
due to positioning of Tilpara reservoir can 
shorten cyclic time of this basin.  
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Fig. 1. Study map 
 
3. MATERIALS AND METHODS 
 
For constructing surface water potential zone, 
thirteen parameters have been considered and 
their concerned sources are mentioned in Table 
1. Data layer used for making SCS CN based 
runoff model is also mentioned in same table.  
 

3.1 Methods for Surface Water Potential 
Models 

 
For nearly two decades, a number of multi-
attribute (or multi-criteria) evaluation methods 
have been implemented in the GIS environment 
for land suitability evaluation, including WLC and 
its variants [52,53] and the analytic hierarchy 
process [54]. There are two fundamental classes 
of multicriteria evaluation methods in GIS: the 
Boolean overlay operations (noncompensatory 
combination rules) and the weighted linear 
combination (WLC) methods (compensatory 
combination rules). They have been the most 
often used approaches for different sorts of land-
use suitability analysis [55-59]. These 
approaches can be generalized within the 
framework of the ordered weighted averaging 
(OWA) [60-64]. 
 
The WLC is a simple additive weighting based on 
the concept of a weighted average [65]. The 
decision maker directly assigns weights of 
'relative importance" to each attribute map layer. 
A total score is then obtained for each alternative 
by multiplying the importance weight assigned for 
each attribute by the scaled value given to the 
alternative on that attribute, and summing the 
products over all attributes. OWA is a family of 
multicriteria combination procedures [66]. It 

involves two sets of weights: the weights of 
relative criterion importance and the order (or 
OWA) weights. Although OWA is a relatively new 
concept [55], there have been several 
applications of this approach in the GIS 
environment [61,67-73]. All those applications 
use the conventional (quantitative) OWA. 
Specifically, research into GIS, OWA has so far 
focused on the procedures that require 
quantitative specification of the parameters 
associated with the OWA operators. 
 
In the present study thirteen parameters with 
their spatial pattern have been selected as map 
layers (see Table 2) Each attribute (map layer) is 
categorized into 10 classes ranking 1 to 10 
(adopting 10 point scale) considering the fact that 
greater rank will reflect greater potentiality of 
getting surface water. To fulfill this purpose, all 
the attributes have been reclassified into 10 
classes and ranked accordingly. The logic behind 
ranking to intra attribute classes from 1-10 is 
described in Table 2. Weightage of each attribute 
has been defined objectively (see Table 2) 
considering the role of those in the study area. 
The logic behind this consideration is that highly 
correlated parameter maximally explains the 
spatial variation of temperature.  Normalization of 
respective weight (values of r for respective 
parameters) based on dimension index has been 
done for frame it in a scientific scale. The result 
of each normalized value is called attribute 
weight. Weights of the parameters for different 
season in respective years are different due to 
having some dynamic variables like land use, 
canopy coverage etc. Therefore nine prospective 
models have been articulated for different 
seasons in the selected years. 
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Table 1. Spatial parameters and their sources 
 

Parameters  Sources  
Drainage frequency, drainage density, 
slope, sinuosity and pond frequency 

Toposheets, Survey of India and Google Image 

Weighted junction score Computed from stream junction map after Pal, 2014 
Land use land cover (LULC) Sensor: Landsat 8 (OLI), Feb., 2014 

(Path/Row:139/43; Band used: G, R, NIR; Spatial 
resolution: 30 m. ), Land use map, 2014 of Land 
reform Deptt., West Bengal 

Seasonal and temporal ground water 
table (GWT) 

Central Ground Water Board and State Water 
Investigating Directorate, 2015 

  
Soil Texture/ soil type Soil texture map prepared by NIC Birbhum District 

Centre  
Junction buffer and stream line buffer Prepared from base maps using GIS 
Relief parameter Derived from SRTM data (USGS) 
Rainfall  Directorate of Agriculture West Bengal 

 
Expression of weight calculation is as follows: 
 

1

rj
j n

r
j

a
w

j
=

=
∑

 

 

wj=weight of jth parameter;  ajr= correlation 
coefficient of jth attribute; Σjr = summation of 
correlation of all jth variable.  
 

Rank of all sub classes under each attribute is 
then multiplied by the defined weight of each 
individual attribute. This function can be 
presented using the following formula. 
 

WLC= 
1

n

ij j
j

a w
=
∑

 

Where, aij= ith rank of jth attribute; wj= 

weightage of jth attribute.  

 
This weighted linear combination has been done 
using raster calculator tool in Arc GIS 
environment.  
 
Apart from weighted linear combination, same 
data layers have also used for simple linear 
combination. This is done for assessing the 
degree of variation yielded from weighted 
compositing. 
 

LC= 
1

n

ij
j

a
=
∑

 

Where, aij= ith rank of jth attribute  

3.2 Methods for Constructing Employed 
Data Layers 

 
Each data layer has been constructed in GIS 
environment using the following methods i.e. 
drainage frequency and density after Horton [82]. 
Average slope and classification of relief have 
been constructed from SRTM data. Land use 
land cover (LULC) map has been constructed 
based on Landsat image based supervised 
image classification in ERDAS Imagine soft 
ware. The accuracy assessment for supervised 
technique has made through a confusion or error 
matrix. Kappa statistics is also calculated for 
assessing suitability of supervised classification. 
Total 100 sample sites from Google earth and 
ground verification are selected for accuracy 
assessment. The accuracy assessment 
generated from the supervised classification 
technique showed an overall classification 
accuracy was 86.0% with Kappa Statistic of 
0.838, which indicates a good agreement 
between thematic maps generated from image 
and the reference data. This amount of 
agreement is generally considered a good 
statistical return. However, the accuracy of 
supervised classification is less than 85 %, which 
is below the acceptable level and standard of 
digital image classification for optical remote 
sensing data recommended by Jansen et al. [83]. 
Agriculture class shows that accuracy level of 
this class ranges from 77.77% to 91.66%. 
However, from the result it is found that all land 
covers classes are classified much better in this 
supervised approach. Junction buffer and stream 
line buffer layer have been made using distance 
mapping techniques in Arc Gis environment.
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Table 2. Scaling of parameters, logic behind and th eir weights based on PCA 
 
Parameters  Scaling  Logic behind scaling  Total correlation 

score (Xi) 
Weighted score  
(Xi/Ximax) 

1. Drainage frequency 10 rank at highest drainage 
frequency 

Surface water potentiality is high at higher frequency 
class 

2.93 0.59 

2. Drainage density 10 rank at highest drainage 
density 

High drainage density indicates higher surface water 
availability. 

3.23 0.65 

3. Slope 10 rank at low slope Gentle slope is favorable for stagnating more surface 
water [74]  

4.61 0.93 

4. Weighted junction score 10 rank at maximum junction 
score 

Maximum weighted junction is conducive of  surface 
water availability [75]  

2.39 0.48 

5.LULC 10 rank at healthy water body 
and vegetation 

Healthy vegetation retains maximum water [76]  1.71 0.35 

6. GWL fluctuation 
(temporal)  

10 rank at lowest value Little fluctuation indicates consistency in water level; 
stable ground water level can support surface water 
availability [77] 

4.32 0.87 

7. GWT fluctuation 
(seasonal) 

10 rank at lowest value Low seasonal fluctuation indicate high level saturation of 
the upper layer and therefore, chance of water 
stagnation over surface increases [77] 

4.45 0.90 

8. Soil texture 10 rank at lowest value Fine textured soil arrests maximum water [78,79] 1.74 0.35 
9. Regional sinuosity 10 rank at highest value More sinuosity indicates greater length of stream and 

associated with plain land [80]  
2.03 0.41 

10. Junction buffer 10 rank at lowest distance  Proximate junction carries high water potentiality 3.24 0.65 
11. Stream line buffer 10 rank at lowest distance Adjacent area of streams possesses high potentiality of 

water 
3.08 0.62 

12. Pond frequency 10 rank at highest value Maximum number of ponds indicate high surface water 
availability 

2.67 0.54 

13. Relief 10 rank at lowest value Low lying area in a basin indicates more surface water 
potentiality [81] 

4.96 1 
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Fig . 2a. Drainage frequency  Fig. 2b. Drainage density  
 

 
 

 

    Fig. 2c. Slope map                                                             Fig. 2d. Weighted junction score  
 

  
 

Fig. 2e. Temporal GWT fluctuation  
(Aug 1990-2014) 

 

Fig. 2f. Seasonal GWT fluctuation  
(May-Aug 2014) 

 

  
 
 

Fig. 2g. Soil texture  Fig. 2h. Regional sinuosity index  
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Fig. 2i. Stream junction buffer  Fig. 2j. Stream line buffer  

 

  
 

Fig. 2k. Relief map  Fig. 2l. Pond frequency  
 

 
 

Fig. 2m. LULC 
 

3.3 Method for Estimating Surface Runoff 
 

The SCS model computes direct runoff through 
an empirical equation that required the rainfall 
and a watershed co-efficient as input. The 
watershed co-efficient is called the curve 
number (CN) which represents the runoff 
potential of the hydrologic soil cover complexes. 
The SCS model [84] involves relationships 
between land cover, hydrologic soil classes and 
curve number. The equation 1 is used to 
calculate the surface runoff of a watershed and it 
is aptly used for small watershed [85]. 
 

Q = (P – Ia)2 / (P – Ia + S)                         (1) 

Where, 
 
Q is actual surface runoff in mm,  
P is rainfall in mm. 

 
For capturing the seasonal variation of initial 
abstraction Ia should be considered different. Here, 
for annual runoff modeling, Ia is taken as 0.3S, for 
monsoon season it is 0.3S and for premonsoon it is 
2S. following Lawrence et al. [86] annual Ia is 
0.1S [Initial abstraction (mm) or losses of water 
before runoff begins by soil and vegetation         
(such as infiltration, or rainfall interception by 
vegetation)]. 
 



 
 
 
 

Khatun and Pal; ACRI, 4(4): 1-20, 2016; Article no. ACRI.27651 
 
 

 
9 
 

S is the potential maximum retention in mm 
and is calculated using the equation 2. 
 

S = (25400 / CN) – 254                              (2) 
 

Both annual and seasonal runoff depth have 
been calculated from annual and seasonal 
rainfall data layers. In earlier section it is 
mentioned that out of total rain more than 80% 
rainfall occurs during monsoon period. To 
capture the impact of seasonal rainfall on runoff, 
runoff models have been constructed season 
wise. In runoff model, emphasis is given only on 
input factors but out factors like evaporation have 
not considered. Considering this fact effective 
runoff depth has been calculated deducting 
evaporation from runoff model. 
 
3.3.1 Discharge data derivation and 

validation of models  
 
Discharge at different surface water potential 
zones at different order streams have been 
measured both during pre and post monsoon. 
Discharge is measured at 65 sites and stratified 
sampling technique has been applied to allocate 
number of sample at different potential zones. 
Discharge data of different surface water 
potential zone is corroborated and tried to 
capture whether discharge data is high at very 
high or high surface water potential zone. It is 
considered that if the hypothesis is valid certainly 
the model will also be validated. 
 
3.3.2 Model validation and runoff predication  
 
The measured runoff is compared with calculated 
runoff by the SCS-CN model. Subsequently, the 
applicability of the model is evaluated by testing 
the relative error (RE) and Nash-Sutcliffe 
efficiency (NSE) [87], both of which are widely 
used in evaluation of model performance [88]. 
 

( )
100%

cal obs
i i

obs
i

Q Q
RE

Q

−
= ×

 
 

( )

2

1

2

1

( )
1

n
obs cal
i i

i
n

cal obs
i mean

i

Q Q
NSE

Q Q

=

=

−
= −

−

∑

∑
 

 
where Qobs

i is the ith observation of runoff, Qcal
i is 

the ith calculated runoff by the SCS-CN model, 
Qobs mean is the mean value of observed runoff, 

and n is the total number of observations. RE 
value nearer to 0 indicates high optimality of the 
model performances. More observed value over 
calculated value yields negative value. NSE 
ranges between −∞ and 1, with NSE = 1 being 
the optimal value. Values of NSE between 0 and 
1 are generally viewed as acceptable levels of 
performance, whereas a value of NSE < 0 
indicates that the mean observed value is a 
better predictor than the simulated value, which 
indicates unacceptable performance [88]. 
   
4. RESULTS AND ANALYSIS 
 
Both simple and weighted composite surface 
water availability have been constructed and 
presented in Figs. 3-4. Figs. 3a and 3b 
respectively show the simple linear combination 
based continuous and classified water potential 
models. Figs. 4a and 4b present the continuous 
and classified WCL based surface water 
potential models respectively. Figs. 5a and 6b 
respectively represent the raster calculators 
where simple and weighted compositing of the 
selected parameters have done for generation of 
models.  Tables 3 and 4 depicts the absolute and 
proportion of area under different potential water 
availability classes. From the WCL model it is 
found that out of total area 24.44sq.km or 
14.18526% area is characterized by very high 
potential surface water availability followed by 
high potentiality 22.48% to total area. 42.40% 
area is characterized by potential low to very low 
water availability zones. Potential surface water 
dearth zone is located at the upper catchment 
area or gully head zones where slope is relatively 
stepper (>3.5°), drainage density is low (0.4 km./ 
sq.km.), temporal water level fluctuation is 
relatively high (>1.75 m.). Confluence part of the 
basin where potential surface water available 
zone is found is characterized by low altitude 
(<74 m.), mild slope (<0.4°), regional sinuosity is 
>1.6, drainage density ranges from 0.4-0.8 km./ 
sq.km., temporal water level fluctuation is <1.5 
m. in last 25 years and relatively finer soil texture 
(<45% sand with diameter greater than 0.05 
mm.). A small depression is also found in this 
zone where at present Tilpara barrage stores 
water. Lower part of the basin, very adjacent part 
of the stream and stream junctions are highly 
viable areas for harvesting surface water. 
Agricultural viability is more in this area than 
upper catchment due to relatively better surface 
hydrological conditions prevail there on. Surface 
water support and high soil moisture (>16%) in 
the pre monsoon months are also some 
favourable vectors in this regard.      
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Fig. 3a. Composite surface water potentiality  Fig. 3b. Classified surface water potentiality  
 

  
 

Fig. 4a. Weighted composite surface water 
potentiality 

Fig. 4b. Weighted classified surface water 
potentiality 

   

  
 

Fig. 5a. Raster calculator with LC of the 
parameters 

 
Fig. 5b. Shows the raster calculator with WCL  

of the parameters 
 

Table 3. Area under different surface water suitabi lity zones (based on un weighted               
composite score) 

 
Water availability status  Classified score  Number of pixel  Area (sq.km.)  % to total area  
Very low 27 - 50 20363 14.16 8.22 
Low 50 - 60 17317 37.82 21.95 
Moderate 60 - 70 17288 38.05 22.08 
High 70 - 80 15963 48.34 28.05 
Very high 80 - 98 17817 33.94 19.69 
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Table 4. Area under different surface water suitabi lity zones (based on weighted                 
composite score)  

 
Suitability status  Weighted composite score  Area extent (sq.km)  % to total area  
Very high potentiality 16.21 - 33.53 24.44 14.19 
High potentiality 33.53 - 41.12 38.73 22.48 
Moderate potentiality 41.12 - 48.69 36.05 20.92 
Low potentiality 48.69 - 55.60 38.97 22.61 
Very low potentiality 55.60 - 66.84 34.11 19.80 

 
Comparison of results yielded from LC and WLC 
models it is found that only 13.5% spatial 
deviation is found. Areal position in LC model of 
any class is quite scattered than WLC model. 
Very high potential zone in WLC model is rather 
clustered than rest one but areal deviation is only 
2.1%. So, application of LC model will not be so 
wrong. 
 

Table 5. Shows the Pearson’s correlation 
coefficient between deriving factors and 

surface water availability zones 
 

Parameters  Correlation 
value  

Relief 0.90805** 
Temporal ground water 
fluctuation 

0.83075** 

Seasonal ground water 
fluctuation 

0.85051** 

Slope 0.84400** 
Drainage density 0.38678** 
Drainage frequency 0.27564* 
Weighted junction score 0.37889** 
Pond 0.31093** 

** r values are significant at 0.01 level and  
* value is significant at 0.05 level 

 

4.1 Driving Factors 
 
Pearson’s correlation between WLC model and 
regulating factors has been calculated for 
detecting dominant driving factor. It is detected 
that relief parameter is most dominant regulatory 
factor (r= 0.908) followed by ground water 
fluctuation (r=0.85), slope (r=0.84) etc. (see 
Table 5). Drainage parameters are also 
significantly associated with surface water 
availability but degree is relatively lower than 
relief parameters. Stream frequency and density 
are high in the upper catchment but most of the 
streams are either 1st or 2nd order and carries 
water seasonally. Therefore, its degree of 
association with surface water availability is little 
bit low. Changes of forest cover and runoff 
modification is one of the important issues 
discussed by many a scholars in recent time 

[89,90]. From this study, it is found that sick 
vegetation allows more surface water potentiality 
runoff (52.826 mm.) than healthier vegetation 
(43.1914 mm.). It is quite unique but rainfall 
pattern compels to reflect so. From principal 
component analysis, it is detected that relief 
parameter explain 51.4% of the variability of 
potential surface water availability.  
 
4.2 Estimation of Runoff Volume for 

Kuskarani Watershed 
 
Figs. 6-8 respectively present the curve number, 
potential retention capacity and initial abstraction 
(Ia) which are required for constructing runoff 
model(s). Curve number of this basin ranges 
from 70-92 (Fig. 6) and weighted CN of the basin 
as whole is 67-87. CN is high in the lower part of 
the basin which is characterized by relatively 
finer soil, some parts are covered with 
vegetation, crop land and grass land. Fig. 7 
illustrates the spatial maximum retention capacity 
of the basin where high potential retention is 
recorded upper part of the basin. Fig. 8 shows 
that average initial abstraction ranges from 6.6-
30.9 mm. with an average of 18.75. Maximum 
initial abstraction (>24 mm.) is noticed in the 
upper catchment. Coarser and bare soils are the 
major vector for such high abstraction. Estimated 
average annual runoff depth in Kuskarani 
watershed is 1362.07 mm. and it varies from 
1291.09 mm. to 1434.92 mm. over the basin 
(Fig. 9a) according to the nature of distribution of 
CN. Fig. 10a shows the continuous runoff depth 
model and Fig. 9b and Table 6 represents the 
classified runoff pattern and their respective 
area. From Table 6 it is clear that 11.27% and 
25.58% area of the total basin area is 
characterized by very high (1393.36mm. to 
1434.92 mm.) and high (1372.23 mm.-1393.96 
mm.) runoff depth zones respectively and these 
are mostly located in the lower, lower middle and 
left wings of the main river. Spatial rainfall 
association is one of the main reasons behind 
such runoff pattern. As most of the periods of a 
year do not receive rain and even the intensity of 
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rainfall is not also equal, the antecedent soil 
moisture condition is not always supports to 
prompt runoff just after rain and runoff response 
is not also even. Out of total runoff, maximum 
runoff yields during monsoon time when rainfall 
is maximum. Actually, it is possible because 
AMC on that monsoon period favours least 
abstractions and supports large scale surface 
runoff. So, in this region, practically runoff does 
mean the amount of flow during monsoon and it 
is 1113.73 mm. (11a) which is 75% of the total 
rainfall. Pre monsoon period also shows 126.24 
mm. runoff (12a) theoretically but practically if 

other outputs like evapotranspiration are taken 
into account, runoff will be 0 in this time. Table 7 
and 8 respectively depict the spatial pattern of 
monsoon and pre monsoon runoff depth and 
their respective areal concentration. Out of total 
basin area 9.02% area records very high runoff 
depth (1,146.069 - 1,182.335 mm.) followed by 
high runoff depth which covers 25.19% to total 
area with a runoff depth of 1,124.927 - 1,146.069 
mm. during monsoon time(see Table 7). Table 8 
shows that 13.82% area is characterized by high 
runoff depth (146.353 - 163.892 mm.) during pre 
monsoon time. 

 

 

 

 

 
 

Fig. 6. Spatial pattern of curve number (CN) 
 

Fig. 7. Spatial pattern of potential maximum 
retention 

 

 
 

Fig. 8. Initial abstraction pattern 
 

  
Fig. 9a. Annual average continuous surface 

runoff depth 
Fig. 9b. Classified average annual surface 

runoff depth model 
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Table 6. Spatial annual average runoff depth 
 
Runoff status  Classified score  (mm.)  Area extent (sq.km)  % of total area  
Very low 1291.09 - 1331.13 23.22 13.48 
Low 1331.13 - 1353.26 40.30 23.39 
Moderate 1353.26 - 1372.23 45.27 26.27 
High 1372.23 - 1393.36 44.09 25.59 
Very high 1393.36 - 1434.92 19.43 11.28 

 

  
 

Fig. 10. Spatial runoff depth in monsoon (a) contin uous model (b) classified model 
 

Table 7. Area under monsoon runoff depth 
 

Runoff status  Classified score  (mm.)  Area extent (sq.km)  % of total area  
Very low 1,049.162 - 1,084.568 23.08 13.40 
Low 1,084.568 - 1,105.775 41.44 24.05 
Moderate potentiality 1,105.775 - 1,124.927 48.84 28.34 
High 1,124.927 - 1,146.069 43.41 25.19 
Very high 1,146.069 - 1,182.335 15.54 9.02 

 

  
 

Fig. 11. Spatial runoff depth in pre monsoon (a) co ntinuous model (b) classified model 
Runoff status 

 
Table 8. Area under pre monsoon runoff depth 

 
Runoff status  Classified score  (mm.)  Area extent (sq.km)  % of total area  
Very low  100.279 - 113.299 40.89 23.73 
Low 113.299 - 121.959 35.94 20.86 
Moderate  121.959 - 132.304 38.71 22.47 
High 132.304- 146.353 34.66 20.11 
Very high 146.353 - 163.892 22.10 12.83 
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4.3 Impact of Evapotranspiration (ET) on 
Runoff  

 
Annual potential evapotranspiration (ET) in the 
study area is about 72cm./year which is almost 
50% of the total rainfall. This rate of evaporation 
strongly varies over seasons, e.g. monsoon pre 
monsoon months (March to May) yield maximum 
ET which most of the cases exceeds rainfall. 
During monsoon time (June to October), this rate 
of ET is not as strong as during pre monsoon 
because of >90% relative humidity in air. Still, 
within monsoon months average ET is 53% of 
the total rainfall. In pre monsoon time this rate is 
>80% but this rate largely differs over LULC 
types. All these information bring another fact in 
forefront that the amount of runoff depth 
calculated as per SCS CN is devoid of 
considering this ET factor and if this factor is 
incorporated certainly the amount of runoff 
estimated and plotted in Figs. 12a and 12b; 13a 
and 13b  will be reduced. Estimation and spatial 
runoff modeling will be more perfect if spatial ET 
of different periods (Monsoon and pre monsoon) 
is deducted from the runoff models of respective 
times. Keeping this unavoidable fact in mind, in 
this section, ET models of the monsoon and pre 
monsoon periods have been constructed based 
on some major vectors of ET like types of LULC, 
soil types, temperature, wind speed etc. following 

FAO 2010 [91]. Growing land use change 
specifically, change of forest land into agriculture 
has intensified soil moisture loss and it will 
negatively affect surface runoff availability.  
 

4.4 Validation of Runoff Model 
 
Calculated RE value and NSE value are 
respectively 53.65% and 0. 6782. RE value 
established that runoff model is not highly 
optimum because relative error is 53.65%. Nash-
Sutcliffe efficiency (NSE) also indicates the same 
but the value remains within the range of 
acceptability (0-1) as stated by Nash and 
Sutcliffe [87]. Here it is to be mentioned that 
effective runoff model is valid but the initial model 
without considering evaporation is not valid in 
these validation reference scales. 
 
4.4.1 Validation of potential surface water 

model surface runoff depth model using 
field based discharge data  

 
Discharge is measured from different stream site 
and junction sites after constructing potential 
surface water available zones. Global Positioning 
System (GPS) based method is used for 
coordinating map and field site. All total 65 sites 
have been selected for measuring discharge 
representing area proportion sampling.    

 

  
 

Fig. 12. Effective surface runoff depth (a) pre mon soon (b) monsoon 
 

  
  

Fig. 13. Classified pattern of effective surface ru noff depth (a) pre-monsoon (b) monsoon 
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4.5 Discharge Conditions 
 
In Table 9, stream strength, discharge 
availability, level of discharge fluctuation in inter 
suitability zones and intra suitability zones. In 
most suitable zone over confluence segment, 
due to having high strength of streams in term of 
flow accumulation, both usable water and 
consistencies of water supply are high. In same 
suitability class, water availability decreases 
upstream segments and away from streams. 
Actual water supply capacity during pre monsoon 

period in most suitable zone varies from 61440 to 
192650 m3/day if all water is used or 43386 to 
130980 m3/day if 30% water is allowed to flow. In 
monsoon time, water supplying capacity is 
almost five times greater than premonsoon. It 
should be noted that estimation is also given for 
seven days considering the irrigation interval to 
the crops like pulses, oil seeds mainly cultivated 
in pre monsoon periods (Table 8). Therefore, 
estimation of irrigated area using the available 
water can be done based on cumulative water 
discharge.  

 
Table 9. Field based measurement of the discharge o f streams and accuracy assessment 

 
Suitability 
status 

Nature of river Discharge (cumec.) Remarks 

Very highly 
potential 
zone 

3rd and 4th order 
dominated at the 
confluence  
2nd and 3rd order 
dominated at the 
middle segment 
 

At the confluence:  
Monsoon: 12.5 cumec 
Premonsoon: 2.3 cumec. 
Spatial variation:  
CV=17.45 to 23.74% 
At the middle segment: 
Monsoon: 05.2 cumec 
Premonsoon: 0.9 cumec. 
Spatial variation:  
CV=18.32 to 26.45% 

Water can be harvested 
directly from stream; pre 
monsoon water harvest 
should not exceed 61440 to 
192650 m3/day or 493530 
to 1309700 m3/7days if all 
water is used or 43386 to 
130980 m3/day or 316372 
to 866826 m3/ 7 days if 30% 
water is allowed to flow.  

High 
potential 
zone 

Either dominated 
by 2nd order with 
few 3rd order  

Monsoon: 4-5.3 cumec 
Premonsoon: 0.4-1.2 cumec. 
Spatial variation: CV=17.42 to 
29.26% 
Seepage water supported 

Water can be harvested 
directly from stream or 
seepage tank can be 
prepared; premonsoon 
water harvest should not 
exceed 51200 to 110960 
m3/day if all water is used or 
231640 to 562602 m3/7 
days if 30% water is 
allowed to flow. 

Moderately 
potential 
zone 

Mainly dominated 
by 1st and 2nd 
order  

Monsoon: 1.92-2.2 cumec 
Premonsoon: 0.24-0.46 cumec. 
Spatial variation: CV=24.65 to 
57.63% 
Seepage water supported 

Water can be harvested 
directly from stream or 
seepage tank is necessary 
to capture water. Water 
availability: 47% to 68% of 
the previous class  

Low 
potential 

1st and 2nd order 
dominated 

Monsoon: 0.16-0.57 cumec 
Premonsoon: 0-0.07 cumec. 
Spatial variation: CV=38.76 to 
71.54% 
 

Deeper water tank or 
shallow well can be 
constructed for water 
harvesting. High level 
fluctuation of water 
supplying potentialities and 
therefore less certain. 

Very low 
potential 
zone 

1st order stream 
dominates 

Monsoon: 0 -0.37 cumec 
Premonsoon: 0 cumec. 
Spatial variation: CV=18.21 to 
34.23% 

Surface water potentiality is 
less, ground water based 
water harvesting structure 
can be installed. 
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Table 10. Regression between Effective runoff depth  and actual per day discharge and WLC 
and discharge 

 
Suitability status 
(Col 1) 

Avg. discharge 
(cumec./day) (Col 2) 

Effective surface 
runoff (mm.) (Col 3) 

WLC 
(Col 4) 

Regression 
model 

Very highly 
potential zone 

12.5 675 38.5 Col 2vs. Col 3  
y = 8E-14e0.048x 
R² = 0.962  
Col 2 vs. Col 3  
y = 0.003e0.094x 
R² = 0.953  
Col 2 vs. Col 3  
y = 0.314e0.008x 
R² = 0.970  

High potential zone 4.65 646.5 55 
Moderately 
potential zone 

2.05 626.6 65 

Low potential 0.3 605.5 75 
Very low potential 
zone 

0.15 577.5 89 

 
So, from this actual availability of water data at 
different surface water potential zones it is 
established that high discharge is found at high 
or very high surface water availability zones. 
Table 8 clearly depicts the degree and direction 
of control of surface runoff depth and WLC to 
actual discharge. High coefficient of 
determination (0.953-0.962) and regression 
models as shown in Table 8 represent high 
degree of positive control. This co linearity of 
association between field data with constructed 
model states that the surface water potential 
model is valid.  
 
Pearson’s product moment correlation coefficient 
value between annual surface runoff and 
weighted surface water potentiality is 0.52956 
which is significant at 0.01 level at one tailed test. 
Correlation coefficient values are also significant 
at the same level when it is carried out between 
monsoon runoff depth and surface water 
potentiality (r=0.6453). So, from these 
associations it can be inferred that surface water 
potential model maintains parallelism with 
surface runoff depth.  
 
Table 10 represents average discharge of 
different surface water potential zones and their 
respective effective runoff depth and weighted 
linear combination score for deriving surface 
water potentiality. Regression carried out 
between average discharge and WLC and 
average discharge and effective runoff depth 
prove that effective runoff depth strongly control 
actual discharge of rivers; surface water potential 
area also yields high discharge in ground reality. 
Positive regression models and high coefficient 
of determination in both the cases (R2=0.953-
0.970) fortify the above statement. This analysis 
supports partial application of such runoff model 
preparation in for finding out suitable surface 
water potential sites and detecting water 
harvesting sites.  

5. CONCLUSION 
 
Surface water potential model shows more 
expected results than runoff depth model but 
discharge pattern validates both the models. For 
increasing the level of acceptability of SCS CN 
based runoff model more perfectly rainfall should 
be measured from adequate number of 
meteorological stations. Necessarily, Ia value 
should be refined at per present situation. 
Besides such limitations of this paper, the 
suitable sites highlighted by surface water 
potential model are concomitant with ground 
reality. Very high and high potential zones 
recorded maximum river discharge. So, this 
model can provide decision support for surface 
water harvesting based planning.     
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