Harnessing Cold Plasma: An Innovative Strategy for Managing Postharvest Fungal Infections in Plants

C. Shanmugaraj *

ICAR – Indian Agricultural Research Institute (IARI), New Delhi – 110 012, India.

V. Jaiganesh

TNAU – Citrus Research Station (CRS), Vannikonenthal, Tirunelveli, Tamil Nadu – 627 951, India.

H.M. Akshay Kumar

ICAR – Indian Agricultural Research Institute (IARI), Assam – 787 035, India.

M.K. Biswas

Palli Siksha Bhavana, Visva-Bharati University, West Bengal – 731 235, India.

*Author to whom correspondence should be addressed.


Abstract

Researchers in plant pathology in recent times; have faced obstacles in finding chemical-free methods to combat postharvest fungal infections on a large scale. While conventional approaches like heat treatments have been utilized, they often present drawbacks such as altering food quality or causing harm to the environment. An encouraging alternative is a cold plasma, which consists of a blend of gas-derived atoms, excited molecules, and charged particles. Unlike alternative treatments, cold plasma has demonstrated no adverse effects on fresh produce or the environment. This review delves into the potential of cold plasma technology in managing postharvest fungal diseases, offering insights into plasma generation systems and examining both in vivo and in vitro studies. By evaluating the benefits, constraints, and current research gaps, this review seeks to guide for implementation of cold plasma technology in commercial settings.

Keywords: Postharvest diseases, fungal pathogens, cold plasma technology, chemical-free control, commercial scale


How to Cite

Shanmugaraj, C., Jaiganesh, V., Kumar, H. A., & Biswas, M. (2024). Harnessing Cold Plasma: An Innovative Strategy for Managing Postharvest Fungal Infections in Plants. Archives of Current Research International, 24(5), 320–331. https://doi.org/10.9734/acri/2024/v24i5707

Downloads

Download data is not yet available.

References

Crookes WI. On a fourth state of matter, in a letter to the Secretary. By W. Crookes, FR S. Proceedings of the Royal Society of London. 1880;30(200-205):469-72.

Langmuir I. Electric discharges in gases at low pressures. Journal of the Franklin Institute. 1932;214(3):275-98.

Nehra V, Kumar A, Dwivedi HK. Atmospheric non-thermal plasma sources. International Journal of Engineering. 2008;2(1):53-68.

Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljevic V, O'donnell CP, Bourke P, et al. Applications of cold plasma technology in food packaging. Trends in Food Science and Technology. 2014;35(1):5-17. Available:https://doi.org/10.1016/j.tifs.2013.10.009

Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, L'H Y. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics. 2001;226(1-2):1-21. Available:https://doi.org/10.1016/s0378-5173(01)00752-9

Chen FF, Smith MD. Plasma. In: Van Nostrand’s Scientific Encyclopedia. John Wiley and Sons, Hoboken, NJ, USA; 2005. Available:https://doi.org/10.1002/0471743984.vse9673

Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov KK. Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents. 2014;43(6):508-17. Available:https://doi.org/10.1016/j.ijantimicag.2014.01.025

Herceg Z, Rezek Jambrak A, Vukusic T, Stulic V, Stanzer D, Milosevic S. The effect of high‐power ultrasound and gas phase plasma treatment on Aspergillus spp. and Penicillium spp. count in pure culture. Journal of Applied Microbiology. 2015;118(1):132-41. Available:https://doi.org/10.1111/jam.12692

Laroussi M, Akan T. Arc‐free atmospheric pressure cold plasma jets: A review. Plasma Processes and Polymers. 2007; 4(9):777-88. Available:https://doi.org/10.1002/ppap.200700066

Niemira BA. Cold plasma decontamination of foods. Annual review of food science and technology. 2012a;3:125-42. Available:https://doi.org/10.1146/annurev-food-022811-101132

Laroussi M. Low temperature plasma‐based sterilization: Overview and state‐of‐the‐art. Plasma processes and polymers. 2005;2(5):391-400. Available:https://doi.org/10.1002/ppap.200400078

Yu H, Perni S, Shi JJ, Wang DZ, Kong MG, Shama G. Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. Journal of Applied Microbiology. 2006;101(6):1323-30. Available:https://doi.org/10.1111/j.1365-2672.2006.03033.x

Sakiyama Y, Graves DB, Chang HW, Shimizu T, Morfill GE. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. Journal of Physics D: Applied Physics. 2012;45(42):425201. Available:https://doi.org/10.1088/0022-3727/45/42/425201

Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P. Formation of ROS and RNS in Water Electro‐S prayed through Transient Spark Discharge in Air and their Bactericidal Effects. Plasma Processes and Polymers. 2013;10(7):649-59. Available:https://doi.org/10.1002/ppap.201200113

Filaire E, Toumi H. Reactive oxygen species and exercise on bone metabolism: friend or enemy?. Joint Bone Spine. 2012;79(4):341-6. Available:https://doi.org/10.1016/j.jbspin.2012.03.007

Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry. 2004;233(1-3):81-6. Available:https://doi.org/10.1016/j.ijms.2003.11.016

Roth JR, Nourgostar S, Bonds TA. The one atmosphere uniform glow discharge plasma (OAUGDP)—A platform technology for the 21st century. IEEE Transactions on Plasma Science. 2007; 35(2):233-50. Available:https://doi.org/10.1109/TPS.2007.892711

Herrmann HW, Henins I, Park J, Selwyn GS. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Physics of Plasmas. 1999;6(5):2284-9. Available:https://doi.org/10.1063/1.873480

Noriega E, Shama G, Laca A, Díaz M, Kong MG. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology. 2011;28(7):1293-300. Available:https://doi.org/10.1016/j.fm.2011.05.007

Baier M, Foerster J, Schnabel U, Knorr D, Ehlbeck J, Herppich WB, et al. Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: Evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biology and Technology. 2013;84:81-7. Available:https://doi.org/10.1016/j.postharvbio.2013.03.022

Matan N, Puangjinda K, Phothisuwan S, Nisoa M. Combined antibacterial activity of green tea extract with atmospheric radio-frequency plasma against pathogens on fresh-cut dragon fruit. Food Control. 2015; 50:291-6. Available:https://doi.org/10.1016/j.foodcont.2014.09.005

Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P. Inactivation of Escherichia coli on almonds using nonthermal plasma. Journal of Food Science. 2007;72(2):M62-6. Available:https://doi.org/10.1111/j.1750-3841.2007.00275.x

Niemira BA. Cold plasma reduction of Salmonella and Escherichia coli O157: H7 on almonds using ambient pressure gases. Journal of Food Science. 2012b;77(3): M171-5. Available:https://doi.org/10.1111/j.1750-3841.2011.02594.x

Nishioka T, Takai Y, Mishima T, Kawaradani M, Tanimoto H, Okada K, et al. Low-pressure plasma application for the inactivation of the seed-borne pathogen Xanthomonas campestris. Biocontrol Science. 2016;21(1):37-43. Available:https://doi.org/10.4265/bio.21.37

Sun S, Anderson NM, Keller S. Atmospheric pressure plasma treatment of black peppercorns inoculated with Salmonella and held under controlled storage. Journal of Food Science. 2014; 79(12):E2441-6. Available:https://doi.org/10.1111/1750-3841.12696

Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schluter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015;55:221-9. Available:https://doi.org/10.1016/j.foodcont.2015.03.003

Frohling A, Durek J, Schnabel U, Ehlbeck J, Bolling J, Schluter O. Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innovative Food Science and Emerging Technologies. 2012;16:381-90. Available:https://doi.org/10.1016/j.ifset.2012.09.001

Gurol CE, Ekinci FY, Aslan N, Korachi M. Low temperature plasma for decontamination of E. coli in milk. International Journal of Food Microbiology. 2012;157(1):1-5. Available:https://doi.org/10.1016/j.ijfoodmicro.2012.02.016

Ragni L, Berardinelli A, Vannini L, Montanari C, Sirri F, Guerzoni ME, et al. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. Journal of Food Engineering. 2010; 100(1):125-32. Available:https://doi.org/10.1016/j.jfoodeng.2010.03.036

Basaran P, Basaran-Akgul N, Oksuz L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiology. 2008;25(4):626-32. Available:https://doi.org/10.1016/j.fm.2007.12.005

Hayashi N, Yagyu Y, Yonesu A, Shiratani M. Sterilization characteristics of the surfaces of agricultural products using active oxygen species generated by atmospheric plasma and UV light. Japanese Journal of Applied Physics. 2014;53(5S1):05FR03. Available:https://doi.org/10.7567/JJAP.53.05FR03

Ouf SA, Basher AH, Mohamed AA. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. Journal of the Science of Food and Agriculture. 2015;95(15):3204-10. Available:https://doi.org/10.1002/jsfa.7060

Klampfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, et al. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Applied and Environmental Microbiology. 2012;78(15):5077-82. Available:https://doi.org/10.1128/AEM.00583-12

Stryczewska HD, Jakubowski T, Kalisiak S, Giżewski T, Pawłat J. Power systems of plasma reactors for non-thermal plasma generation. Journal of Advanced Oxidation Technologies. 2013;16(1):52-62. Available:https://doi.org/10.1515/jaots-2013-0105

Li K, Tanielian M, inventors; Boeing Co, assignee. Handheld atmospheric pressure glow discharge plasma source. United States patent US 5,977,715; 1999.

Pei X, Lu X, Liu J, Liu D, Yang Y, Ostrikov K, et al. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet. Journal of Physics D: Applied Physics. 2012;45(16):165205. Available:https://doi.org/10.1088/0022-3727/45/16/165205

Dasan BG, Boyaci IH, Mutlu M. Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: Impact of process parameters and surveillance of the residual viability of spores. Journal of Food Engineering. 2017;196:139-49. Available:https://doi.org/10.1016/j.jfoodeng.2016.09.028

Won MY, Lee SJ, Min SC. Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science and Emerging Technologies. 2017;39:25-32. Available:https://doi.org/10.1016/j.ifset.2016.10.021

Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, et al. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy. 2011;55(3):1053- 62. Available:https://doi.org/10.1128/AAC.01002-10

Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, et al. Comparison of direct and indirect effects of non‐thermal atmospheric‐pressure plasma on bacteria. Plasma Processes and Polymers. 2007;4(4):370-5. Available:https://doi.org/10.1002/ppap.200600217

Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, et al. Plasma medicine: possible applications in dermatology. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2010;8(12):968-76. Available:https://doi.org/10.1111/j.1610-0387.2010.07495.x.

Liu K, Wang C, Hu H, Lei J, Han L. Indirect treatment effects of water–air MHCD jet on the inactivation of Penicilliumdigitatum suspension. IEEE Transactions on Plasma Science. 2016;44(11):2729-37. Available:https://doi.org/10.3389/fphy.2020.00242

Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, et al. Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Applied Materials and Interfaces. 2016; 8(30):19268-75. Available:https://doi.org/10.1021/acsami.6b04555

Chirokov A, Gutsol A, Fridman A. Atmospheric pressure plasma of dielectric barrier discharges. Pure and Applied Chemistry. 2005;77(2):487-95. Available:https://doi.org/10.1351/pac200577020487

Fernandez A, Thompson A. The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International. 2012;45(2):678-84. Available:https://doi.org/10.1016/j.foodres.2011.04.009

Sohbatzadeh F, Mirzanejhad S, Shokri H, Nikpour M. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. Journal of Theoretical and Applied Physics. 2016;10:99-106. Available:https://doi.org/10.1007/s40094-016-0206-z

Dasan BG, Mutlu M, Boyaci IH. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. International Journal of Food Microbiology. 2016b; 216:50-9. Available:https://doi.org/10.1016/j.ijfoodmicro.2015.09.006

Ochi A, Konishi H, Ando S, Sato K, Yokoyama K, Tsushima S, et al. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Plant Pathology. 2017;66(1):67-76. Available:https://doi.org/10.1111/ppa.12555

Kang MH, Pengkit A, Choi K, Jeon SS, Choi HW, Shin DB, et al. Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. Plos One. 2015;10(9):e0139263. Available:https://doi.org/10.1371/journal.pone.0139263

Dasan BG, Boyaci IH, Mutlu M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control. 2016a;70:1-8. Available:https://doi.org/10.1016/j.foodcont.2016.05.015

Kordas L, Pusz W, Czapka T, Kacprzyk R. The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Polish Journal of Environmental Studies. 2015;24(1).

Selcuk M, Oksuz L, Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology. 2008;99(11): 5104-9. Available:https://doi.org/10.1016/j.biortech.2007.09.076

Ouf SA, Mohamed AA, El‐Sayed WS. Fungal decontamination of fleshy fruit water washes by double atmospheric pressure cold plasma. CLEAN–Soil, Air, Water. 2016;44(2):134-42. Available:https://doi.org/10.1002/clen.201400575

Lacombe A, Niemira BA, Gurtler JB, Fan X, Sites J, Boyd G, et al. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology. 2015;46:479-84. Available:https://doi.org/10.1016/j.fm.2014.09.010

Wu Y, Cheng JH, Keener KM, Sun DW. Inhibitory effects of dielectric barrier discharge cold plasma on pathogenic enzymes and anthracnose for mango postharvest preservation. Postharvest Biology and Technology. 2023;196: 112181. Available:https://doi.org/10.1016/j.postharvbio.2022.112181

Akaber S, Ramezan Y, Khani MR. Effect of post-harvest cold plasma treatment on physicochemical properties and inactivation of Penicillium digitatum in Persian lime fruit. Food Chemistry. 2024; 437:137616. Available:https://doi.org/10.1016/j.foodchem.2023.137616

Panngom K, Lee SH, Park DH, Sim GB, Kim YH, Uhm HS, et al. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. Plos One. 2014;9(6): e99300. Available:https://doi.org/10.1371/journal.pone.0099300

Lu Q, Liu D, Song Y, Zhou R, Niu J. Inactivation of the tomato pathogen Cladosporiumfulvum by an atmospheric‐pressure cold plasma jet. Plasma Processes and Polymers. 2014; 11(11):1028-36. Available:https://doi.org/10.1002/ppap.201400070

Kang MH, Hong YJ, Attri P, Sim GB, Lee GJ, Panngom K, et al. Analysis of the antimicrobial effects of nonthermal plasma on fungal spores in ionic solutions. Free Radical Biology and Medicine. 2014; 72:191-9. Available:https://doi.org/10.1016/j.freeradbiomed.2014.04.023

Konishi H, Takashima K, Kato T, Kaneko T, Inawashiro S, Seo N. Sterilization effects of reactive species in atmospheric air plasma on plant pathogenic fungi. In Proceedings of Plasma Conference, Nigata, Japan; 2014.

Wimmer J, Schulz A, Scheer C, Voegele RT. Plasma as a postharvest treatment against Monilia spp. on plum. In: Ecofruit: Proceedings of the 16th International Conference on Organic-Fruit Growing. Weinsberg, Germany: FOEKO, 256–7. Available:http://www.ecofruit.net/2014/45SCM_Wimmer_plasma_plum_p256-257.pdf]. Accessed 27 March 2024.

Na YH, Park G, Choi EH, Uhm HS. Effects of the physical parameters of a microwave plasma jet on the inactivation of fungal spores. Thin Solid Films. 2013;547:125-31. Available:https://doi.org/10.1016/j.tsf.2013.04.055

Hu X, Sun H, Yang X, Cui D, Wang Y, Zhuang J, et al. Potential use of atmospheric cold plasma for postharvest preservation of blueberries. Postharvest Biology and Technology. 2021;179: 111564. Available:https://doi.org/10.1016/j.postharvbio.2021.111564

Ye SY, Song XL, Liang JL, Zheng SH, Lin Y. Disinfection of airborne spores of Penicilliumexpansum in cold storage using continuous direct current corona discharge. Biosystems Engineering. 2012; 113(2):112-9. Available:https://doi.org/10.1016/j.biosystemseng.2012.06.013

Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics. 2012;45(26):263001. Available:https://doi.org/10.1088/0022-3727/45/26/263001

Marsili L, Espie S, Anderson JG, MacGregor SJ. Plasma inactivation of food-related microorganisms in liquids. Radiation Physics and Chemistry. 2002; 65(4-5):507-13. Available:https://doi.org/10.1016/S0969-806X(02)00367-5

Xiong Z, Lu X, Feng A, Pan Y, Ostrikov K. Highly effective fungal inactivation in He+ O2 atmospheric-pressure nonequilibrium plasmas. Physics of Plasmas. 2010; 17(12). Available:https://doi.org/10.1063/1.3526678

Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, et al. Effects of atmospheric-pressure N2, He, air, and O2microplasmas on mung bean seed germination and seedling growth. Scientific Reports. 2016; 6(1):32603. Available:https://doi.org/10.1038/srep32603

Park G, Ryu YH, Hong YJ, Choi EH, Uhm HS. Cellular and molecular responses of Neurospora crassa to non-thermal plasma at atmospheric pressure. Applied Physics Letters. 2012;100(6). Available:https://doi.org/10.1063/1.3684632

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 2002;7(9):405-10. Available:https://doi.org/10.1016/s1360-1385(02)02312-9

Kotchoni SO, Gachomo EW. The reactive oxygen species network pathways: An essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journal of Biosciences. 2006;31(3):389-404. Available:https://doi.org/10.1007/BF02704112

Taheri P, Tarighi S. The role of pathogenesis-related proteins in the tomato-Rhizoctonia solani interaction. Journal of Botany. 2012;2012. Available:https://doi.org/10.1155/2012/137037

Los A, Ziuzina D, Boehm D, Bourke P. Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. International Journal of Food Microbiology. 2020;335:108889. Available:https://doi.org/10.1016/j.ijfoodmicro.2020.108889

Schluter O, Ehlbeck J, Hertel C, Habermeyer M, Roth A, Engel KH, et al. Opinion on the use of plasma processes for treatment of foods. Molecular Nutrition and Food Research. 2013;57(5): 920-7. Available:https://doi.org/10.1002/mnfr.201300039