The Amentoflavone-Rich Extract of Ouratea fieldingiana Leaves Presents Antioxidant and Anti-inflammatory Activity in Mice

Lucas Soares Frota

Laboratory of Chemistry of Natural Products, Postgraduate Programme in Natural Sciences, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

Francisco Glerison da Silva Nascimento

Superior Institute of Biomedical Sciences, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

Leonardo Soares Freitas

Laboratory of Chemistry of Natural Products, Chemistry Course, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

Francisco Flavio da Silva Lopes

Laboratory of Chemistry of Natural Products, Postgraduate Programm in Biotechnology, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

Ramon Róseo Paula Pessoa Bezerra de Menezes

Postgraduate Programme in Pharmaceutical Sciences, Federal University of Ceará, CEP 60430-355, Fortaleza, Ceará, Brazil.

Alana de Freitas Pires

Superior Institute of Biomedical Sciences, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

Rondinelle Ribeiro Castro

Superior Institute of Biomedical Sciences, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

Ana Maria Sampaio Assreuy

Superior Institute of Biomedical Sciences, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

Selene Maia de Morais *

Laboratory of Chemistry of Natural Products, Postgraduate Programme in Natural Sciences, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil and Laboratory of Chemistry of Natural Products, Chemistry Course, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil and Laboratory of Chemistry of Natural Products, Postgraduate Programm in Biotechnology, Ceará State University, Itaperi Campus s/Nº CEP 60714-903, Fortaleza, Ceará, Brazil.

*Author to whom correspondence should be addressed.


Abstract

Aims: To evaluate the antioxidant and anti-inflammatory effects of the Ouratea fieldingiana leaf extract (OFE) and its main constituent amentoflavone (AMT).

Study Design: The phenolic compounds of Ouratea fieldingiana leaves (OFE) were quantified, the chemical structure characterized and the anti-inflammatory effect of OFE and amentoflavone was evaluated in mice paw edema and peritonitis.

Place and Duration of Study: The work involved the partnership of the Natural Products Chemistry Laboratory and Inflammation Physio pharmacology Laboratory, between July 2020 and June 2021.

Methodology: The OFE was obtained from 70% ethanol extract of O. fieldingiana. OFE was subjected to classic chromatographic column furnishing AMT. The phenolic compounds were characterized by HPLC and quantified by Follin-Ciocalteu methodology. The antiradical potential was evaluated by DPPH and ABTS methods. Anti-inflammatory activity was determined in female Swiss mice received per oral OFE (0.1-10 mg/kg) or sterile saline 60 min before stimulation with carrageenan (300 mg) for quantification of the parameters: edema, abdominal hypernociception, neutrophil migration and oxidative stress markers (reduced glutathione, malondialdehyde, myeloperoxidase and catalase activities).

Results: AMT was identified as the main compound in the OFE (292.64 ± 3.87 mg/g extract). OFE has an average inhibitory concentration of 9.81 ± 0.17 µg/mL extract to inhibit the DPPH radical. OFE and AMT inhibited paw edema [OFE: 32% (0-2 h), 28% (2-4 h); AMT: 55% (0-2h); 51% (2-4 h)], neutrophil migration (OFE: 65%; AMT: 67%); myeloperoxidase activity (OFE: 37%; AMT: 45%) and abdominal hypernociception (OFE: 31%; AMT: 35%). OFE, but not AMT, increased catalase activity (57%) and reduced glutathione (62%), but decreased malondialdehyde (69%).

Conclusion: The amentoflavone-rich extract from O. fieldingiana leaves presents antioxidant activity in vitro and in vivo, and anti-inflammatory activity in vivo, corroborating the popular use of the plant.

Keywords: Ouratea, amentoflavone, oxidative stress, antioxidant activity, anti-inflammatory activity, hypernociception


How to Cite

Frota , L. S., Nascimento , F. G. da S., Freitas, L. S., Lopes, F. F. da S., Menezes, R. R. P. P. B. de, Pires, A. de F., Castro, R. R., Assreuy , A. M. S., & Morais, S. M. de. (2024). The Amentoflavone-Rich Extract of Ouratea fieldingiana Leaves Presents Antioxidant and Anti-inflammatory Activity in Mice. Archives of Current Research International, 24(4), 59–70. https://doi.org/10.9734/acri/2024/v24i4660

Downloads

Download data is not yet available.

References

Fidelis QC, Ribeiro TAN, Araújo MF, Carvalho MG. Ouratea genus: chemical and pharmacological aspects. Rev. Bras. Farmacogn. 2014,24:1–19.

Silva RBL, Freitas JL, Silvas SKA, Silva RSP, Cantuária PC. Use and management of Ouratea hexasperma A. St.-Hil. Baill var. Planchonii Engl. barbatimão in the Vila Ressaca da Pedreira community, Macapá, Amapá, Brazil. In Conhecimento e Manejo Sustentável da Biodiversidade Amapaense. São Paulo. 2017,39–60.

Dahlgren RMT. A revised system of classification of the angiosperms. Botanical Journal of the Linnean Society.1980;80(2): 91–124.

Metcalfe CR, Chalk L. Anatomy of the dicotyledons. Oxford, Claredon Press. 1950;1500.

Daniel JFS, Carvalho MG, Cardoso RS, Agra MF, Eberlin MN. Other flavonoids from Ouratea hexasperma (Ochnaceae). J Braz Chem Soc.2005;16(3b):634–638.

Joly ABB. Botânica: Introdução à Taxonomia Vegetal. Cia Editora Nacional: São Paulo. 1988;12.

Barroso GM. Sistemática de Angiospermas do Brasil. 1986;1.

Pickel DBJ. Flora do nordeste do Brasil segundo Piso e Marcgrave no século XVII. [S.l:s.n.]; 2008.

Braga R. Plantas do Nordeste, especialmente do Ceará. 4th ed. Mossoró, RN: Editora Universitária da UFRN; 1960.

Frota LS, Alves DR, Freitas LS, Lopes FFS, Marinho MM, Marinho ES, Morais SM. In vitro antioxidant and anticholinesterase activities of Ouratea fieldingiana (Gardner) Eng. leaf extract and correlation with its phenolics profile with an in silico study in relation to Alzheimer’s disease. J Braz Chem Soc. 2022; 33(05).

Nascimento JET, Rodrigues ALM, Lisboa DS, Liberato HR, Falcão MJC, Silva CR, Nobre Júnior HV, Braz Filho R, Paula Junior VF, Alves DR, Morais SM. Chemical composition and antifungal in vitro and in silico, antioxidant, and anticholinesterase activities of extracts and constituents of Ouratea fieldingiana (DC.) Baill. Evid Based Complement Alternat Med. 2018; 2018:1748487.

Li WW, Li D, Qin Y, Sun CX, Wang YL, Gao L, Ling-Hu L, Zhang F, Cai W, Zhu L, Wang G. Cardioprotective effects of Amentoflavone by suppression of apoptosis and inflammation on an in vitro and vivo model of myocardial ischemia-reperfusion injury. Int Immunopharmacol. 2021;101:108296.

Arowoogun J, Akanni OO, Adefisan AO,Owumi SE, Tijani AS, Adaramoye OA. Rutin ameliorates copper sulfate‐induced brain damage via antioxidative and anti‐inflammatory activities in rats. J Biochem Mol Toxicol. 2021;35(1):e22623.

Hua F, Zhou P, Liu PP, Bao GH, Rat plasma protein binding of kaempferol-3-O-rutinoside from Lu’an GuaPian tea and its anti-inflammatory mechanism for cardiovascular protection. J Food Biochem. 2021;45(7):e13749.

Rogerio AP, Kanashiro A, Fontanari C, Silva EV, Lucisano-Valim YM, Soares EG, Faccioli LH. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm Res. 2007;56(10):402–408.

Su C, Yang C, Gong M, Ke Y, Yuan P, Wang X, Li M, Zheng X, Feng W. Antidiabetic activity and potential mechanism of amentoflavone in diabetic mice. Molecules. 2019;24(11):2184.

Frota LS, Rocha MN, Bezerra LL, Fonseca AM, Marinho ES, Morais SM. HIF1 inhibition of the biflavonoids against pancreas cancer: Drug-likeness, Bioavailability, ADMET, PASS, Molecular docking, Molecular dynamics, and MM/GBSA Calculations. J Biomol Struct Dyn. 2022;1–12.

Miroshnychenko K, Shestopalova AV. Combined use of amentoflavone and ledipasvir could interfere with binding of spike glycoprotein of SARS-CoV-2 to ACE2: The results of molecular docking study. ChemRxiv; 2020.

Li YL, Chen X, Niu SQ, Zhou HY, Li QS. Protective antioxidant effects of amentoflavone and total flavonoids from hedyotis diffusa on H2O2‐Induced HL‐O2 cells through ASK1/p38 MAPK pathway. Chem Biodivers. 2020;17(7):e2000251.

Frota LS, Alves DR, Marinho MM, Silva LP, Almeida Neto FWQ, Marinho ES, Morais SM. Antioxidant and anticholinesterase activities of amentoflavone isolated from Ouratea fieldingiana (Gardner) Engl. through in vitro and chemical-quantum studies. J Biomol Struct Dyn. 2023;41(4):1206-1216.

Frota LS, Lopes FFS, Alves DR, Freitas LS, Franco GMG, Morais SM. Chemical composition and evaluation of antioxidant and anticholinesterase activities of oil from fruits of Ouratea fieldingiana (Gargner) Engl. Research, Society and Development. 2021;10:10.

Adebayo SA, Dzoyem JP, Shai LJ, Eloff JN. The anti-inflammatory and antioxidant activity of 25 plant species used traditionally to treat pain in southern African. BMC Complement Altern Med. 2015;15:159.

McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med; 2018;125:15-24.

Ndrepepa G. Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36–51.

Min HK, Kim SH, Kim HR, Lee SH. Therapeutic utility and adverse effects of biologic disease-modifying anti-rheumatic drugs in inflammatory arthritis. Int J Mol Sci. 2022;23(22):13913.

Gothai S, Arulselvan P, Tan WS, Fakurazi S. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. J Intercult Ethnopharmacol. 2016;5(1):1-6.

Sousa CMM, Silva HR, Vieira-Jr. GM, Ayres MCC, Costa CLS, Araújo DS, Cavalcante LCD, Barros EDS, Araújo PBM, Brandão MS, Chaves MH. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quim. Nova. 2007;30:351.

Funari CS, Ferro VO. Análise de própolis. Ciência e Tecnol. Aliment. 2006;26:171.

Becker M, Nunes GS, Ribeiro DB, Silva FEPS, Catanante G, Marty J. Determination of the antioxidant capacity of red fruits by miniaturized spectrophotometry assays. J Braz Chem Soc.2019;3(4):223–227.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999;26(9–10): 1231–1237.

Landucci EC, Antunes E, Donato JL, Faro R, Hyslop S, Marangoni S, Oliveira B, Cirino G, Nucci G. Inhibition of carrageenin-induced rat paw oedema by crotapotin, a polypeptide complexed with phospholipase A2. Br J Pharmacol. 1995; 114(3):578–583.

Silva-Leite KES, Girão DKFB, Pires AF, Assreuy AMS, Moraes PAF, Cunha AP, Ricardo NMPS, Criddle DN, Souza MHLP, Pereira MG, Soares PMG. Ximenia americana heteropolysaccharides ameliorate inflammation and visceral hypernociception in murine caerulein-induced acute pancreatitis: Involvement of CB2 receptors. Biomed Pharmacother. 2018;106:1317-1324.

Souza GE, Ferreira SH. Blockade by antimacrophage serum of the migration of PMN neutrophils into the inflamed peritoneal cavity. Agents Actions. 1985; 17(1):97–103.

Basit A, Shutian T, Khan A, Khan SM, Shahzad R, Khan A, Khan S, Khan M. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomed Pharmacother. 2022;153:113322.

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205.

Cighetti G, Debiasi S, Paroni R, Allevi P. Free and total malondialdehyde assessment in biological matrices by gas chromatography–mass pectrometry: What Is needed for an accurate detection. Anal Biochem. 1999; 266(2):222-229.

Bradley PP, Christensen RD, Rothstein G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood. 1982; 60(3):618–622.

Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants (Basel). 2023;12(6):1217.

Muhammad Umar Ijaz, Ali Akbar, Asma Ashraf, Saad Alkahtani, Abdullah A. AlKahtane, Mian Nadeem Riaz. Antioxidant, anti-inflammatory and anti-apoptotic effects of amentoflavone on gentamicin-induced kidney damage in rats. Journal of King Saud University – Science. 2023;35(7):102791.

Nascimento JET, Morais SM, Lisboa DS, Oliveira Sousa M, Santos SAAR, Magalhães FEA, Campos AR. The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed & Pharmacother. 2018;107:1030–1036.

Yoo, H, Ku, SK, Baek, YD. et al. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm. Res. 2014;63:197–206.

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454(7203):428–435.

Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, Marques LMM, Cunha FQ, Alves-Filho JC, Zamboni DS, Lopes NP, Franklin BS, Gombault A, Ramalho FS, Quesniaux VFJ, Couillin I, Ryffel B, Cunha TM. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal. 2020;18(1):141.

Cunha TM, Verri Jr WA, Silva JS, Poole S, Cunha FQ, Ferreira S.H. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA. 2005;102(5): 1755-1750.

Selloum L, Bouriche H, Tigrine C, Boudoukha C. Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation. Exp Toxicol Pathol. 2003;54(4):313–318.

Trang DT, Huyen LT, Nhiem NX, Quang TH, Hang DTT, Yen PH, Tai BH, Anha HLT, Binh NQ, Van Minha C, Van Kiem P. Tirucallane glycoside from the leaves of Antidesma bunius and Inhibitory NO production in BV2 Cells and RAW264.7 Macrophages. Nat Prod Comm. 2016; 11(7):935-937.

Kuo YH, Yeh YT, Pan SY, Hsieh SC. Identification and structural elucidation of anti-inflammatory compounds from Chinese olive (Canarium Album L.) fruit extracts. Foods. 2019,8(10):441.

Zhao HY, Wang YQ, Li YC, Lan Q, Liao HB, Wang HS, Liang D. Flavonol glycosides and phenylpropanoid glycosides with inhibitory effects on microglial nitric oxide production from Neoshirakia japonica. Fitoterapia. 2021;151:104877.

Gil B, Sanz MJ, Terencio MC, Gunasegaran R, Payá M, Alcaraz MJ. Morelloflavone, a novel biflavonoid inhibitor of human secretary phospholipase A2 with anti-inflammatory activity. Biochem. Pharmacol. 1997;53(7):733–740.

Tordera M, Ferrándiz ML, Alcaraz MJ. Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Z Naturforsch C J biosci. 1994;49(3-4):235–240.

Kim HK, Son KH, Chang HW, Kang SS, Kim HP. Amentoflavone, a plant biflavone: A new potential anti-inflammatory agent. Arch Pharm Res. 1998;21(4):406–410.

Coderre TJ. Contribution of protein kinase C to central sensitization and persistent pain following tissue injury. Neurosci Lett. 1992;140:181–184.

Yilmaz MI, Romano M, Basarali MK, Elzagallaai A, Karaman M, Demir Z, Demir MF, Akcay F, Seyrek M, Haksever N, Piskin D, Cimaz R, Rieder MJ, Demirkaya E. The effect of corrected inflammation, oxidative stress and endothelial dysfunction on fmd levels in patients with selected chronic diseases: A quasi-experimental study. Sci Rep. 2020;10(1): 9018.

Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, O'Neill LA. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016; 167(2):457-470.

Yousaf M, Razmovski-Naumovski V, Zubair M, Chang D, Zhou X. Synergistic effects of natural product combinations in protecting the endothelium against cardiovascular risk factors. Journal of Evidence-Based Integrative Medicine. 2022;27:2515690X221113327.