Biochemical Profiling of the Rinds of Commercial Watermelon Cultivars in Bangalore, Karnataka, India

Safi S. *

College of Horticulture, UHS Campus, Bengaluru, India.

Vasudeva K. R.

College of Horticulture, UHS Campus, Bengaluru, India.

Jagadeesh S. L.

Horticultural Research and Extension Centre, UHS Campus, Bengaluru, India.

Shivanna M.

College of Horticulture, UHS Campus, Bengaluru, India.

Jayashree U

College of Horticulture, UHS Campus, Bengaluru, India.

Aravind K.

College of Horticulture, UHS Campus, Mysuru, India.

*Author to whom correspondence should be addressed.


Abstract

Watermelon rind, often considered agricultural waste and frequently disposed of, contributes to environmental problems and biomass loss. This study seeks to analyze the distinct Biochemical profiles of watermelon rind, highlighting variations among different cultivars of Bangalore, Karnataka. Total soluble solids, pH, Moisture, titratable acidity, total carbohydrates, total proteins, ash, fat, total energy, fibre, total sugars, total phenolic contents, total antioxidant activity and L*, a*, b* color values were estimated for six local commercial varieties to observe the differences between them. The rinds of all six cultivars had significant variations for all the parameters. This study provides the first-hand knowledge regarding watermelon rind biochemical profiles and cultivar difference and shows the potential use of rind in food or beverages due to its naturally contained bioactive compounds.

Keywords: Watermelon, rind, biochemical, cultivar


How to Cite

Safi S., Vasudeva K. R., Jagadeesh S. L., Shivanna M., Jayashree U, & Aravind K. (2024). Biochemical Profiling of the Rinds of Commercial Watermelon Cultivars in Bangalore, Karnataka, India. Archives of Current Research International, 24(4), 118–126. https://doi.org/10.9734/acri/2024/v24i4667

Downloads

Download data is not yet available.

References

Paris HS. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Annals of botany. 2015;116(2):133-148.

Kassim MA, Hussin AH, Meng TK, Kamaludin R, Zaki MSIM, Zakaria WZEW. Valorisation of watermelon (Citrullus lanatus) rind waste into bioethanol: An optimization and kinetic studies. Int. J. Environ. Sci. Technol. 2021;e 033105.

Romdhane MB, Haddar A, Ghazala I, Jeddou KB, Helbert CB, Ellouz-Chaabouni S. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chem. 2017;216:355–364.

Rambabu K, Bharath G, Hai A, Luo S, Liao K, Abu Haija M, Banat F, Naushad M. Development of watermelon rind derived activated carbon/manganese ferrite nanocomposite for cleaner desalination by capacitive deionization. J. Clean. Prod. 2020;272:122626.

Liu W, Zhao S, Cheng Z, Wan X, Yan Z, King SR. Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. J.Acta. Hortic. 2010;871: 543-550.

Yang F, Liu Y, Wang B, Song H, Zou T. Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatography-ion mobility spectrometry and comprehensive two-dimensional gas chromatographyolfactory- mass spectrometry analysis. LWT. 2020;137: 11047.

Lee-Hoon H, Ramli NF, Tan TC, Muhamad N, Haron MN. Effect of extraction solvents and drying conditions on total phenolic content and antioxidant properties of watermelon rind powder. Sains Malays. 2018;47(47):99-107.

Egbuonu ACC. Comparative assessment of some mineral, amino acid and vitamin compositions of watermelon (Citrullus lanatus) rind and seed. Asian J. Biochem. 2015;10:230–236.

Méndez DA, Fabra MJ, Gómez-Mascaraque L, López-Rubio A, Martinez-Abad A. Modelling the extraction of pectin towards the valorisation of watermelon rind waste. Foods. 2021;10:738.

Simonne A, Carter M, Fellers R, Weese J, Wei CI, Smonne E, Miller M. Chemical, physical and sensory characterization of watermelon rind pickles. J. Food Process. Preserv. 2003;26:415–431.

Al-Sayed HMA, Ahmed AR. Utilization of watermelon rinds and Sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. J. of Agricultural Sciences. 2013;58:83-95.

Naknaen P, Itthisoponkul T, Sondee A, Angsombat N. Utilization of watermelon rind waste as a potential source of dietary fiber to improve health promoting properties and reduce glycemic index for cookie making. Food Sci. Biotechnol. 2016,;25:415–424.

Chakrabarty N, Mourin MM, Islam N, Haque AR, Akter S, Siddique AA, Sarker M. Assessment of the Potential of Watermelon Rind Powder for the Value Addition of Noodles. J. Biosyst. Eng. 2020;45:223–231.

Badr SA, El-Waseif MA, Ghaly MS. Effect of addition watermelon rind powder on quality criteria and microbial aspects of beef burger patties during frozen storage periods. J. Food & Dairy Sci. 2018;9(6): 177-187.

Kumar P, Mehta N, Malav OP, Kumar Chatli M, Rathour M, Kumar Verma A. Antioxidant and antimicrobial efficacy of watermelon rind extract (WMRE) in aerobically packaged pork patties stored under refrigeration temperature (4 _ 1 _C). J. Food Process. Preserv. 2018; 42:e13757.

Hasanin MS, Hashem AH. Eco-friendly, economic fungal universal medium from watermelon peel waste. J. Microbiol Methods. 2020;168:e105802.

Nadeem M, Navida M, Ameer K, Iqbal A, Malik F, Nadeem MA, Fatima H, Ahmad A, Din A. A comprehensive review on the watermelon phytochemical profile and their bioactive and therapeutic effects. Korean Journal of Food Preservation. 2022;29(4):546-576.

AOAC. Official methods of analysis, 15th Edition, Association of official analytical chemists, Washington, DC; 1990.

DuBois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Analytical chemistry. 1956;28(3):350-356.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;19(3):265–275.

AOAC. Official methods of analysis, 21th Edition, Association of official analytical chemists, Washington, DC; 2006.

Sadasivam S, Manickam A. Biochemical methods 2nd Edition., New Age International (P) Ltd., New Delhi; 2005.

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70-6.

Anonymous. Official methods of analysis of the association of analytical chemists. (14th Ed.). Arlington, Virginia, U.S.A; 1990.

Singh D, Singh R, Saini JS, Singh PK. Morpho-biochemical characterization and D2 analysis of watermelon (Citrullus lanatus) landraces from India and exotic germplasm. Indian J. Agric. Sci., 2016;88(10):1633-1639.

Sabeetha S, Amin I, Nisak MB. Physico-chemical characteristics of watermelon in Malaysia. J. Trop. Agric. 2017;45(2):209-223.

Olayinka BU, Etejere EO. Proximate and chemical compositions of watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai cv. red and cucumber (Cucumis sativus L. cv. Pipino). Int. Food Res. J. 2017;25(3).

Massri M, Labban L. Comparison of different types of fertilizers on growth, yield and quality properties of watermelon (Citrllus lanatus). Agric. Sci. 2015; 13(2):1113-1119.

Rouphael Y, Cardarelli M, Colla G, Rea E. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Hort. Sci. 2008;43(3):730-736.

Bazié D, Konaté K, Kaboré K, Dakuyo R, Sanou A, Sama H, Dicko MH. Nutraceutical potential of the pulp of five cultivars of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] grown in Burkina Faso. Int. J. Food Prop. 2022;25(1):1848-1861.

Yimer ZS, Tehulie NS. Nutritional composition of different varieties of watermelon (Citrullus lanatus) fruit at gewane, northeastern Ethiopia. J. Curr. Res. Food Sci. 2020;1(1):16-22.

Ibrahim SE, Sulieman AME, Hassan EN, Ali NA, Abd el Hakeem BS, Muhsin AMAA. Proximate chemical composition of watermelon (Citrullus vulgaris). Plant Cell Biotechnol Mol Biol. 2021;114-121.

Maoto MM, Beswa D, Jideani AI. Watermelon as a potential fruit snack. Int. J. Food Prop., 2019;22(1):355-370.

Tlili I, Hdider C, Lenucci MS, Ilahy R, Jebari H, Dalessandro G. Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. J. Food Compost. Anal. 2011;24(7):923-928.

Yoo KS, Bang H, Lee EJ, Crosby K, Patil BS. Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Hortic. Environ. Biotechnol. 2012;53:552-560.

Elmstrom GW, Davis PL. Sugars in developing and mature fruits of several watermelon cultivars. J. Am. Soc. Hortic. Sci. 1981;106(3):330-333.

Radulović M, Ban D, Sladonja B, Lusetić-Bursić V. Changes of quality parameters in watermelon during storage. In: III International Symposium on Cucurbits. 2007;731:451-456.

Guo C, Yang J, Wei J, Li Y, Xu J, Jiang Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res. 2003;23(12): 1719-1726.

Fredes A, Roselló S, Beltrán J, Cebolla‐Cornejo J, Pérez‐de‐Castro A, Gisbert C, Picó MB. Fruit quality assessment of watermelons grafted onto citron melon rootstock. J. Sci. Food Agric. 2017;97(5):1646-1655.